Using the definition of limit at infinity or infinite limits, prove that
a) lim𝑥 → 3 1/ (𝑥 − 3) 2 = ∞
Let "C>0" be fixed. Solve
"\\left| \\frac{1}{\\left( x-3 \\right) ^2} \\right|>C\\Leftrightarrow \\left| x-3 \\right|<\\frac{1}{\\sqrt{C}}"
Thus for every C>0 there exists "\\delta =\\frac{1}{\\sqrt{C}}" such that "\\left| x-3 \\right|<\\delta \\Rightarrow \\left| \\frac{1}{\\left( x-3 \\right) ^2} \\right|>C"
By the definition
"\\underset{x\\rightarrow 3}{\\lim}\\frac{1}{\\left( x-3 \\right) ^2}=\\infty"
Comments
Leave a comment