Activity in Limit Theorems
Directions: Assume the following.
1. lim f(x) = 3/4
x→c
2. lim g(x) = 12
x→c
3. lim h(x) = -3
x→c
Given that
"\\lim_{x\\rightarrow c}f(x)=\\frac{3}{4}"
"\\lim_{x\\rightarrow c}g(x)=12"
"\\lim_{x\\rightarrow c}h(x)=-3"
We can use these values in the following examples to understand some of the limit theorems.
limit theorems.
Ex 1. "\\lim_{x\\rightarrow c}f(x)\\pm\\lim_{x\\rightarrow c}g(x)"
To find "\\lim_{x\\rightarrow c}f(x)\\pm\\lim_{x\\rightarrow c}g(x)" , we use the given values,
"\\lim_{x\\rightarrow c}f(x)=\\frac{3}{4}" and "\\lim_{x\\rightarrow c}g(x)=12"
Therefore,
"=\\frac{3}{4}\\pm(12)"
"=\\frac{3}{4}+(12)=\\frac{51}{4}" and "=\\frac{3}{4}-(12)=\\frac{-45}{4}"
Ex 2. "\\lim_{x\\rightarrow c}[(2.f(x))+\\sqrt{12.g(x)}]"
To find "\\lim_{x\\rightarrow c}[(2.f(x))+\\sqrt{12.g(x)}]" , we use the given values,
"\\lim_{x\\rightarrow c}[(2.f(x))+\\sqrt{12.g(x)}]\\\\=[(2.\\lim_{x\\rightarrow c}f(x))+\\sqrt{12.\\lim_{x\\rightarrow c}g(x)}]"
"=[(2.\\frac{4}{3})+\\sqrt{(12)(12)}]"
"=\\frac{8}{3}+12=\\frac{44}{3}"
"\\lim_{x\\rightarrow c}f(x)=\\frac{3}{4}" and "\\lim_{x\\rightarrow c}g(x)=12"
Therefore,
"=2(\\frac{3}{4})+(12)=\\frac{27}{2}"
Ex 3. "lim_{x\\rightarrow c}4\\frac{f(x)-g(x)}{2h(x)}"
"=\\frac{\\lim_{x\\rightarrow c}4f(x)-\\lim_{x\\rightarrow c}g(x)}{\\lim_{x\\rightarrow c}2h(x)}"
"=\\frac{4\\lim_{x\\rightarrow c}f(x)-\\lim_{x\\rightarrow c}g(x)}{2\\lim_{x\\rightarrow c}h(x)}"
"=\\frac{4(\\frac{3}{4})-(12)}{(2)(-3)}"
"=\\frac{3}{2}"
Ex 4. "lim_{x\\rightarrow c}[h(x)-4f(x)]"
"=lim_{x\\rightarrow c}h(x)-4lim_{x\\rightarrow c}f(x)"
"=(-3)-4(\\frac{3}{4})"
"=-3-3"
"=-6"
Comments
Leave a comment