Find the coordinates of the points on the curve π¦ = 3π₯Β³ β 2π₯Β² β 12π₯ + 2 where
the normal is parallel to the line π¦ =β π₯ + 1.
Find the coordinates of the points on the curve π¦ = 3π₯Β³ β 2π₯Β² β 12π₯ + 2 where
the normal is parallel to the line π¦ =β π₯ + 1.
The derivative
The slope of the normal is -1, hence the slope of the tangent line is .
Then
The points are
Comments
Leave a comment