Apply definition of antiderivative and find area under the curve of f(x) = x^1/2 between x=0 and
x=1
Solution
The required area is calculated as:
"A = \\int\\limits_a^b {f\\left( x \\right)\\,} dx\\"
Here "f(x)=\\sqrt{x}" and the limits are "a=0" and "b=1"
Therefore, the required area is
"A = \\int\\limits_0^1 {\\sqrt x \\,} dx\\"
"A=[\\frac{x^\\frac{3}{2})}{\\frac{3}{2}}]_{0}^{1}"
"A = \\frac{2}{3}\\left[ {{x^{{\\textstyle{2 \\over 3}}}}} \\right]_0^1\\"
"A = \\frac{2}{3}\\left[ {{{\\left( 1 \\right)}^{{\\textstyle{2 \\over 3}}}} - {{\\left( 0 \\right)}^{{\\textstyle{2 \\over 3}}}}} \\right]\\"
"A = \\frac{2}{3}\\left[ {1 - 0} \\right]\\"
"A = \\frac{2}{3}" square units
The shaded area below shows the required area.
Comments
Leave a comment