Activity in Limit Theorems
Directions: Assume the following.
1. lim f(x) = 3/4
x→c
2. lim g(x) = 12
x→c
3. lim h(x) = -3
x→c
Solution
Given that
"\\mathop {\\lim }\\limits_{x \\to c} f\\left( x \\right) = \\frac{3}{4}\\\\"
"\\mathop {\\lim }\\limits_{x \\to c} g\\left( x \\right) = 12\\\\"
"\\mathop {\\lim }\\limits_{x \\to c} h\\left( x \\right) = - 3"
We can solve the following different limits which will be using the above-given values.
Example (1)
"\\mathop {\\lim }\\limits_{x \\to c} \\left[ {4 \\cdot f\\left( x \\right)} \\right] = 4\\mathop { \\cdot \\lim }\\limits_{x \\to c} f\\left( x \\right) = 4 \\cdot \\frac{3}{4} = 3\\"
Example (2)
"\\mathop {\\lim }\\limits_{x \\to c} \\left[ {g\\left( x \\right) - h\\left( x \\right)} \\right] = \\mathop {\\lim }\\limits_{x \\to c} g\\left( x \\right) - \\mathop {\\lim }\\limits_{x \\to c} h\\left( x \\right) = 12 - \\left( { - 3} \\right) = 12 + 3 = 15\\"
Example (3)
"\\mathop {\\lim }\\limits_{x \\to c} \\sqrt {12 \\cdot f\\left( x \\right)} = \\sqrt {12 \\cdot \\mathop {\\lim }\\limits_{x \\to c} f\\left( x \\right)} = \\sqrt {12 \\cdot \\frac{3}{4}} = \\sqrt {3 \\cdot 3} = \\sqrt 9 = 3\\"
Example (4)
"\\mathop {\\lim }\\limits_{x \\to c} \\left( {\\frac{{g\\left( x \\right) + h\\left( x \\right)}}{{f\\left( x \\right)}}} \\right) = \\frac{{\\mathop {\\lim }\\limits_{x \\to c} g\\left( x \\right) + \\mathop {\\lim }\\limits_{x \\to c} h\\left( x \\right)}}{{\\mathop {\\lim }\\limits_{x \\to c} f\\left( x \\right)}} = \\frac{{12 + \\left( { - 3} \\right)}}{{\\frac{3}{4}}} = 9 \\times \\frac{4}{3} = 12\\"
Example (5)
"\\mathop {\\lim }\\limits_{x \\to c} \\left( {f\\left( x \\right) + h\\left( x \\right)} \\right) = \\mathop {\\lim }\\limits_{x \\to c} f\\left( x \\right) + \\mathop {\\lim }\\limits_{x \\to c} h\\left( x \\right) = \\frac{3}{4} + \\left( { - 3} \\right) = \\frac{{3 - 12}}{4} = - \\frac{9}{4}\\"
Comments
Leave a comment