Consider the function, f(x)=2x³ - 24x² -7. Find the intervals of x where f(x) is
increasing or decreasing.
Given , f(x) = 2x3 - 24x2 - 7
At the critical point , we know that
f'(x) = 0
So, differentiate the given equation with respect x
f'(x) = 6x2 - 48x = 0
6x(x- 8) = 0
6x = 0 , x-8=0
x=0, x =8
1) f'(x) > 0 , if x<0 and x>8 So, f(x) increases in (-"\\infin", 0) U (7, "\\infin")
2). f'(x) < 0 , if 0<x<8
So, f(x) decreases in (0,8)
Comments
Leave a comment