Given that
limx→cf(x)=43 limx→cg(x)=12 limx→ch(x)=−3
For these values there are no questions, however, a few of the examples are below which will explain how we can use these values using limit theorems.
Ex 1. limx→cf(x)+2limx→cg(x)
To find limx→cf(x)+2limx→cg(x) , we use the given values,
limx→cf(x)=43 and limx→cg(x)=12
Therefore,
=43+2(12)=499
Ex 2. limx→cf(x)+2limx→cg(x)
To find limx→cf(x)+2limx→cg(x) , we use the given values,
limx→cf(x)=43 and limx→cg(x)=12
Therefore,
=43+2(12)=499
Ex 3. limx→ch(x)f(x)−3g(x)
=limx→cf(x)limx→cf(x)−3limx→cg(x)
=−343−(3)(12)
=447
Ex 4. limx→c[h(x)−4f(x)]
=limx→ch(x)−4limx→cf(x)
=(−3)−4(43)
=−3−3
=−6
Comments