Question #309605

Activity in Limit Theorems



Directions: Assume the following.



1. lim f(x) = 3/4


x→c



2. lim g(x) = 12


x→c



3. lim h(x) = -3


x→c






1
Expert's answer
2022-03-14T07:24:24-0400

Given that


limxcf(x)=34\lim_{x\rightarrow c}f(x)=\frac{3}{4} limxcg(x)=12\lim_{x\rightarrow c}g(x)=12 limxch(x)=3\lim_{x\rightarrow c}h(x)=-3


For these values there are no questions, however, a few of the examples are below which will explain how we can use these values using limit theorems.


Ex 1. limxcf(x)+2limxcg(x)\lim_{x\rightarrow c}f(x)+2\lim_{x\rightarrow c}g(x)


To find limxcf(x)+2limxcg(x)\lim_{x\rightarrow c}f(x)+2\lim_{x\rightarrow c}g(x) , we use the given values,

limxcf(x)=34\lim_{x\rightarrow c}f(x)=\frac{3}{4} and limxcg(x)=12\lim_{x\rightarrow c}g(x)=12


Therefore,


=34+2(12)=994=\frac{3}{4}+2(12)=\frac{99}{4}




Ex 2. limxcf(x)+2limxcg(x)\lim_{x\rightarrow c}f(x)+2\lim_{x\rightarrow c}g(x)


To find limxcf(x)+2limxcg(x)\lim_{x\rightarrow c}f(x)+2\lim_{x\rightarrow c}g(x) , we use the given values,

limxcf(x)=34\lim_{x\rightarrow c}f(x)=\frac{3}{4} and limxcg(x)=12\lim_{x\rightarrow c}g(x)=12


Therefore,


=34+2(12)=994=\frac{3}{4}+2(12)=\frac{99}{4}



Ex 3. limxcf(x)3g(x)h(x)lim_{x\rightarrow c}\frac{f(x)-3g(x)}{h(x)}


=limxcf(x)3limxcg(x)limxcf(x)=\frac{\lim_{x\rightarrow c}f(x)-3\lim_{x\rightarrow c}g(x)}{\lim_{x\rightarrow c}f(x)}


=34(3)(12)3=\frac{\frac{3}{4}-(3)(12)}{-3}


=474=\frac{47}{4}



Ex 4. limxc[h(x)4f(x)]lim_{x\rightarrow c}[h(x)-4f(x)]


=limxch(x)4limxcf(x)=lim_{x\rightarrow c}h(x)-4lim_{x\rightarrow c}f(x)

=(3)4(34)=(-3)-4(\frac{3}{4})


=33=-3-3


=6=-6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS