Activity in Limit Theorems
Directions: Assume the following.
1. lim f(x) = 3/4
x→c
2. lim g(x) = 12
x→c
3. lim h(x) = -3
x→c
Given that
"\\lim_{x\\rightarrow c}f(x)=\\frac{3}{4}" "\\lim_{x\\rightarrow c}g(x)=12" "\\lim_{x\\rightarrow c}h(x)=-3"
For these values there are no questions, however, a few of the examples are below which will explain how we can use these values using limit theorems.
Ex 1. "\\lim_{x\\rightarrow c}f(x)+2\\lim_{x\\rightarrow c}g(x)"
To find "\\lim_{x\\rightarrow c}f(x)+2\\lim_{x\\rightarrow c}g(x)" , we use the given values,
"\\lim_{x\\rightarrow c}f(x)=\\frac{3}{4}" and "\\lim_{x\\rightarrow c}g(x)=12"
Therefore,
"=\\frac{3}{4}+2(12)=\\frac{99}{4}"
Ex 2. "\\lim_{x\\rightarrow c}f(x)+2\\lim_{x\\rightarrow c}g(x)"
To find "\\lim_{x\\rightarrow c}f(x)+2\\lim_{x\\rightarrow c}g(x)" , we use the given values,
"\\lim_{x\\rightarrow c}f(x)=\\frac{3}{4}" and "\\lim_{x\\rightarrow c}g(x)=12"
Therefore,
"=\\frac{3}{4}+2(12)=\\frac{99}{4}"
Ex 3. "lim_{x\\rightarrow c}\\frac{f(x)-3g(x)}{h(x)}"
"=\\frac{\\lim_{x\\rightarrow c}f(x)-3\\lim_{x\\rightarrow c}g(x)}{\\lim_{x\\rightarrow c}f(x)}"
"=\\frac{\\frac{3}{4}-(3)(12)}{-3}"
"=\\frac{47}{4}"
Ex 4. "lim_{x\\rightarrow c}[h(x)-4f(x)]"
"=lim_{x\\rightarrow c}h(x)-4lim_{x\\rightarrow c}f(x)"
"=(-3)-4(\\frac{3}{4})"
"=-3-3"
"=-6"
Comments
Leave a comment