Answer to Question #309606 in Calculus for Luna Heart

Question #309606

Activity in Limit Theorems



Directions: Assume the following.



1. lim f(x) = 3/4


x→c



2. lim g(x) = 12


x→c



3. lim h(x) = -3


x→c






1
Expert's answer
2022-03-14T19:04:18-0400

Solution


Given that


"\\mathop {\\lim }\\limits_{x \\to c} f\\left( x \\right) = \\frac{3}{4}\\\\"


"\\mathop {\\lim }\\limits_{x \\to c} g\\left( x \\right) = 12\\\\"


"\\mathop {\\lim }\\limits_{x \\to c} h\\left( x \\right) = - 3"


We can solve the following different limits which will be using the above-given values.



Example (1)


"\\mathop {\\lim }\\limits_{x \\to c} \\left[ {4 \\cdot f\\left( x \\right)} \\right] = 4\\mathop { \\cdot \\lim }\\limits_{x \\to c} f\\left( x \\right) = 4 \\cdot \\frac{3}{4} = 3\\"



Example (2)


"\\mathop {\\lim }\\limits_{x \\to c} \\left[ {g\\left( x \\right) - h\\left( x \\right)} \\right] = \\mathop {\\lim }\\limits_{x \\to c} g\\left( x \\right) - \\mathop {\\lim }\\limits_{x \\to c} h\\left( x \\right) = 12 - \\left( { - 3} \\right) = 12 + 3 = 15\\"



Example (3)


"\\mathop {\\lim }\\limits_{x \\to c} \\sqrt {12 \\cdot f\\left( x \\right)} = \\sqrt {12 \\cdot \\mathop {\\lim }\\limits_{x \\to c} f\\left( x \\right)} = \\sqrt {12 \\cdot \\frac{3}{4}} = \\sqrt {3 \\cdot 3} = \\sqrt 9 = 3\\"



Example (4)


"\\mathop {\\lim }\\limits_{x \\to c} \\left( {\\frac{{g\\left( x \\right) + h\\left( x \\right)}}{{f\\left( x \\right)}}} \\right) = \\frac{{\\mathop {\\lim }\\limits_{x \\to c} g\\left( x \\right) + \\mathop {\\lim }\\limits_{x \\to c} h\\left( x \\right)}}{{\\mathop {\\lim }\\limits_{x \\to c} f\\left( x \\right)}} = \\frac{{12 + \\left( { - 3} \\right)}}{{\\frac{3}{4}}} = 9 \\times \\frac{4}{3} = 12\\"



Example (5)


"\\mathop {\\lim }\\limits_{x \\to c} \\left( {f\\left( x \\right) + h\\left( x \\right)} \\right) = \\mathop {\\lim }\\limits_{x \\to c} f\\left( x \\right) + \\mathop {\\lim }\\limits_{x \\to c} h\\left( x \\right) = \\frac{3}{4} + \\left( { - 3} \\right) = \\frac{{3 - 12}}{4} = - \\frac{9}{4}\\"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS