Answer to Question #305437 in Calculus for Fresh

Question #305437

Find the minimum value and maximum value of f (x,y,z)= 8x^2 -2y subject to x^2 + y^2 =1


1
Expert's answer
2022-03-04T06:58:11-0500

We are asked for the extreme values of ff subject to the constraint g(x,y,z)=x2+y2=1.g(x,y,z)=x^2+y^2=1.

Using Lagrange multipliers, we solve the equations f(x,y)=λg(x,y)\nabla f(x,y)=\lambda\nabla g(x, y) and g(x,y)=1,g(x,y)=1,

which can be written as


fx=λgx,fy=λgy,x2+y2=1f_x=\lambda g_x, f_y=\lambda g_y, x^2+y^2=1

16x=λ(2x),2=λ(2y),x2+y2=116x=\lambda(2x), -2=\lambda(2y), x^2+y^2=1

We have x=0x=0 or λ=8.\lambda=8.

If x=0,x=0, then y=1y=-1 or y=1.y=1.

If λ=8,\lambda=8, then y=1/8y=-1/8 and x=±378x=\pm\dfrac{3\sqrt{7}}{8}

f(0,1)=8(0)22(1)=2f(0, -1)=8(0)^2-2(-1)=2

f(0,1)=8(0)22(1)=2f(0, 1)=8(0)^2-2(1)=-2

f(378,18)=8(378)22(18)=658f(-\dfrac{3\sqrt{7}}{8}, -\dfrac{1}{8})=8(\dfrac{-3\sqrt{7}}{8})^2-2(-\dfrac{1}{8})=\dfrac{65}{8}

f(378,18)=8(378)22(18)=658f(\dfrac{3\sqrt{7}}{8}, -\dfrac{1}{8})=8(\dfrac{3\sqrt{7}}{8})^2-2(-\dfrac{1}{8})=\dfrac{65}{8}

Therefore the maximum value of f on the circle x2+y2=1x^2+y^2=1 is f(±378,18)=658,f(\pm\dfrac{3\sqrt{7}}{8}, -\dfrac{1}{8})=\dfrac{65}{8} , and the

minimum value is f(0,1)=2.f(0, 1)=-2.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment