Question #305328

Find the coordinates of the points on the curve 𝑦 = 3𝑥3 − 2𝑥2 − 12𝑥 + 2 where the normal is parallel to the line 𝑦 = −𝑥 + 1.


1
Expert's answer
2022-03-03T18:03:59-0500
y=3x32x212x+2y=3x^3-2x^2-12x+2

y=9x24x12y'=9x^2-4x-12

The slope of the normal is


slope=1f(x0)=1slope=-\dfrac{1}{f'(x_0)}=-1

Then


9x024x012=19x_0^2-4x_0-12=1

9x024x013=09x_0^2-4x_0-13=0

x0=139 or x0=1x_0=\dfrac{13}{9}\ or\ x_0=-1

x0=139x_0=\dfrac{13}{9}


y(139)=3(139)32(139)212(139)+2=2543243y(\dfrac{13}{9})=3(\dfrac{13}{9})^3-2(\dfrac{13}{9})^2-12(\dfrac{13}{9})+2=-\dfrac{2543}{243}

x0=1x_0=-1


y(1)=3(1)32(1)212(1)+2=9y(-1)=3(-1)^3-2(-1)^2-12(-1)+2=9

Point(139,2543243),Point(1,9)Point(\dfrac{13}{9}, -\dfrac{2543}{243}), Point(-1, 9)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS