Evaluate integral of c (xy^4) ds where c is right half of the circle x^2 + y^2 =16 traced out in a counter clockwise direction parameterized using x=4cost, y=4sint
We can parametrize "C" by
Then we have
"|\\vec r'|=\\sqrt{(-4\\sin t)^2+(4\\cos t)^2}=4"
"\\int_Cxy^4ds=\\displaystyle\\int_{-\\pi\/2}^{\\pi\/2}(4\\cos t)(4\\sin t)^4(4)dt"
"=4^6[\\dfrac{\\sin ^5t}{5}]\\begin{matrix}\n \\pi\/2 \\\\\n -\\pi\/2\n\\end{matrix}=\\dfrac{2^{13}}{5}"
Comments
Leave a comment