Question #305433

Evaluate integral of c (xy^4) ds where c is right half of the circle x^2 + y^2 =16 traced out in a counter clockwise direction parameterized using x=4cost, y=4sint


1
Expert's answer
2022-03-04T09:32:12-0500

We can parametrize CC by


r=4cost,4sint,π/2tπ/2\vec r=\langle4\cos t, 4\sin t\rangle, -\pi/2\le t\le \pi/2

Then we have


r=4sint,4cost\vec r'=\langle-4\sin t, 4\cos t\rangle

r=(4sint)2+(4cost)2=4|\vec r'|=\sqrt{(-4\sin t)^2+(4\cos t)^2}=4

Cxy4ds=π/2π/2(4cost)(4sint)4(4)dt\int_Cxy^4ds=\displaystyle\int_{-\pi/2}^{\pi/2}(4\cos t)(4\sin t)^4(4)dt

=46[sin5t5]π/2π/2=2135=4^6[\dfrac{\sin ^5t}{5}]\begin{matrix} \pi/2 \\ -\pi/2 \end{matrix}=\dfrac{2^{13}}{5}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS