Using the Chain Rule, find the ππ¦/ππ₯ and express the final answer in term of x.
π¦ = 2π’/π’Β²β1 , u=xΒ²
Solution
Given that
"y=\\frac{2u}{u^{2}-1} ... (1)\\\\\n\\\\\nu=x^{2} ... (2)"
From (1),
"{\\color{Blue} y=\\frac{2u}{u^{2}-1}}\\\\\n\\frac{dy}{du}=\\frac{(u^{2}-1)\\frac{d}{du}(2u)-(2u)\\frac{d}{du}(u^{2}-1)}{(u^{2}-1)^{2}}\\\\\n\\frac{dy}{du}=\\frac{(u^{2}-1)(2)-(2u)(2u)}{(u^{2}-1)^{2}}\\\\\n\\frac{dy}{du}=\\frac{(2u^{2}-2)-(4u^{2})}{(u^{2}-1)^{2}}\\\\\n\\frac{dy}{du}=\\frac{(-2u^{2}-2)}{(u^{2}-1)^{2}}\\\\\n\\frac{dy}{du}=\\frac{-2(u^{2}+1)}{(u^{2}-1)^{2}} ... (3)\\\\"
Now from (2)
"{\\color{Blue}u=x^{2}}\\\\\n\\frac{du}{dx}=\\frac{d}{dx}(x^{2})\\\\\n\\frac{du}{dx}=2x ... (4)"
According to the chain rule
"\\frac{dy}{dx}=\\frac{dy}{du}\\times \\frac{du}{dx}"
Using (3) and (4)
"\\frac{dy}{dx}=\\frac{dy}{du}\\times \\frac{du}{dx}\\\\\n\\\\\n\\\\\n\n\\frac{dy}{dx}=\\frac{-2(u^{2}+1)}{(u^{2}-1)^{2}}\\times (2x)\\\\\n\\\\\n\\\\\n\n\\frac{dy}{dx}=\\frac{-4x(u^{2}+1)}{(u^{2}-1)^{2}}\\\\"
Hence according to the chain rule,
"{\\color{Blue}\\frac{dy}{dx}=\\frac{-4x(u^{2}+1)}{(u^{2}-1)^{2}}}\\\\"
Comments
Leave a comment