Question #305304

Find the first and second derivative of the following:



1. y=cos x²


2.y=sinx cos x²


3.y=xsin x²


4.y=x cos x²

1
Expert's answer
2022-03-04T06:48:53-0500

1)y=cosx2y=sinx22x=2xsinx2y=2sinx22xcosx22x==2sinx24x2cosx2;2)y=sinxcosx2y=cosxcosx22xsinxsinx2y=sinxcosx2cosxsinx22xcosxsinx22xsinxcosx22x2xsinxsinx22==sinxcosx24xcosxsinx24x2sinxcosx22sinxsinx2;3)y=xsinx2y=sinx2+xcosx22x==sinx2+2x2cosx2y=cosx22x+4xcosx22x2sinx22x==6xcosx24x3sinx2;4)y=xcosx2y=cosx2xsinx22x==cosx22x2sinx2y=sinx22x4xsinx22x2cosx22x==6xsinx24x3cosx2.1) y=\cos x^2\\ y' =-\sin x^2\cdot 2x=-2x\sin x^2\\ y''=-2\sin x^2 - 2x\cdot\cos x^2\cdot2x=\\ =-2\sin x^2-4x^2 \cos x^2;\\ 2) y=\sin x\cos x^2\\ y'=\cos x \cos x^2 - 2x\sin x \sin x^2\\ y''=-\sin x \cos x^2 -\cos x \sin x^2 \cdot 2x -\\ -\cos x \sin x^2 \cdot 2x - \sin x\cos x^2\cdot2x\cdot2x-\\ -\sin x \sin x^2 \cdot2=\\ =-\sin x\cos x^2 -4x \cos x \sin x^2-\\ -4x^2 \sin x\cos x^2 -2\sin x \sin x^2;\\ 3) y=x \sin x^2\\ y'=\sin x^2 +x\cdot\cos x^2\cdot2x=\\ =\sin x^2 +2x^2 \cos x^2\\ y''=\cos x^2 \cdot 2x+4x \cos x^2 -2x^2 \sin x^2 \cdot2x=\\ =6x \cos x^2-4x^3 \sin x^2;\\ 4) y=x \cos x^2\\ y'= \cos x^2 -x \sin x^2 \cdot 2x=\\ =\cos x^2 - 2x^2 \sin x^2\\ y''= -\sin x^2\cdot 2x- 4x \sin x^2-2x^2 \cos x^2\cdot2x=\\ =-6x \sin x^2-4x^3\cos x^2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS