Write down 𝑇3(𝑥), 𝑇4(𝑥), 𝑎𝑛𝑑 𝑇5(𝑥) for the Taylor series of 𝑓(𝑥) = ln (3 + 4𝑥) about 𝑥 = 0
"f'(x)=\\dfrac{4}{3+4x}"
"f'(0)=\\dfrac{4}{3+4(0)}=\\dfrac{4}{3}"
"f''(0)=-\\dfrac{16}{(3+4(0)^2}=-\\dfrac{16}{9}"
"f'''(x)=\\dfrac{128}{(3+4x)^3}"
"f'''(0)=\\dfrac{128}{(3+4(0))^3}=\\dfrac{128}{27}"
"f^{(4)}(x)=-\\dfrac{1536}{(3+4x)^4}"
"f^{(4)}(0)=-\\dfrac{1536}{(3+4(0))^4}=-\\dfrac{512}{27}"
"f^{(5)}(x)=\\dfrac{24576}{(3+4x)^5}"
"f^{(5)}(0)=\\dfrac{24576}{(3+4(0))^5}=\\dfrac{8192}{81}"
"T_3(x)=\\ln3+\\dfrac{4}{3}x-\\dfrac{8}{9}x^2+\\dfrac{64}{81}x^3"
"+\\dfrac{1024}{1215}x^5"
Comments
Leave a comment