Consider the function, f x( ) = 2x3 −24x2 −7. Find the intervals of x where f(x) is increasing or decreasing.
dfdx=6x2−48x=6x(x−8).\frac{df}{dx}=6x^2-48x=6x(x-8).dxdf=6x2−48x=6x(x−8).
dfdx>0→x<0 or x>8\frac{df}{dx}>0 \to x<0\; or\; x>8dxdf>0→x<0orx>8.
Thus, f(x)f(x)f(x) increases on (−∞,0)∪(8,∞).(-\infin,0)\cup(8,\infin).(−∞,0)∪(8,∞).
dfdx<0→0<x<8.\frac{df}{dx}<0 \to 0<x<8.dxdf<0→0<x<8.
Thus, f(x)f(x)f(x) decreases on (0,8).(0,8).(0,8).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments