1.f(x)=2x3+6x
here we apply the sum rule
=d/dx(2x3)+d/dx(6x)
=6x2+6
2.g(x)=7x4−3x2
here we apply the difference rule
=d/dx(7x4)−d/dx(3x2)
=28x3−6x
3.y(x)=(4x)3−18x2+6x
= (4x3)=64x3
=64x3−18x2+6x
we apply the sum/difference rule
=d/dx(64x3)−d/dx(18x2)+d/dx(6x)
=192x2−36x+6
4.h(x)=(3x+4)2
here we apply the chain rule
d/dx[f(g(x)]=d/d[g(x)][f(x)]∗d/dx(g(x))
let f(x)=2
g(x)=3x+4)
d/dx[(3x+4)2]=2∗(3x+4)∗d/dx(3x+4)
d/dx(3x+4)=3
=3(6x+8)
=18x+24
5.h(x)=9x2/3 + 2/4x
here we apply the sum rule
d/dx(9x2/3) =6x-1/3
to get the derivative of d/dx (2/4x )
= 2/4d/dx(1/x )
=2/4(−1/2(x−1/2−1))
=−1/4x3/2
=6x-1/3-1/4x3/2
Comments