Question #305349

Use the rules of differentiation to differentiate the following functions.



1.f(x)=2x³+6x


2.g(x)=7x⁴-3x²


3.y(x)=(4x)³-18x²+6x


4.h(x)=(3x+4)²


5.h(x)=9x⅔+2/4√x

1
Expert's answer
2022-03-07T09:01:02-0500

1.f(x)=2x3+6xf(x)=2x^3+6x

here we apply the sum rule

=d/dx(2x3)+d/dx(6x)d/dx(2x^3)+d/dx(6x)

=6x2+66x^2+6

2.g(x)=7x43x2g(x)=7x^4-3x^2

here we apply the difference rule

=d/dx(7x4)d/dx(3x2)=d/dx(7x^4)-d/dx(3x^2)

=28x36x=28x^3-6x

3.y(x)=(4x)318x2+6xy(x)=(4x)^3-18x^2+6x

== (4x3)=64x3(4x^3)=64x^3

=64x318x2+6x=64x^3-18x^2+6x

we apply the sum/difference rule

=d/dx(64x3)d/dx(18x2)+d/dx(6x)=d/dx(64x^3)-d/dx(18x^2)+d/dx(6x)

=192x236x+6=192x^2-36x+6

4.h(x)=(3x+4)2h(x)=(3x+4)^2

here we apply the chain rule

d/dx[f(g(x)]=d/d[g(x)][f(x)]d/dx(g(x))d/dx[f(g(x)]=d/d[g(x)][f(x)]*d/dx(g(x))

let f(x)=2f(x)=2

g(x)=3x+4)g(x)=3x+4)

d/dx[(3x+4)2]=2(3x+4)d/dx(3x+4)d/dx[(3x+4)^2]=2*(3x+4) *d/dx(3x+4)

d/dx(3x+4)=3d/dx(3x+4)= 3

=3(6x+8)=3(6x+8)

=18x+24=18x+24

5.h(x)=9xh(x)= 9x2/3 + 2/4x2/4\sqrt{ x}

here we apply the sum rule

d/dx(9x2/3) =6x-1/3

to get the derivative of d/dx (2/4x2/4 ​ \sqrt{x} )

= 2/4d/dx(1/x2/4d/dx(1/ ​ \sqrt{x} )

=2/4(1/2(x1/21))=2/4(-1/2(x^-1/2-1))

=1/4x=-1/4x3/2

=6x-1/3-1/4x3/2






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS