Use the rules of differentiation to differentiate the following functions.
1.f(x)=2x³+6x
2.g(x)=7x⁴-3x²
3.y(x)=(4x)³-18x²+6x
4.h(x)=(3x+4)²
5.h(x)=9x⅔+2/4√x
1."f(x)=2x^3+6x"
here we apply the sum rule
="d\/dx(2x^3)+d\/dx(6x)"
="6x^2+6"
2."g(x)=7x^4-3x^2"
here we apply the difference rule
"=d\/dx(7x^4)-d\/dx(3x^2)"
"=28x^3-6x"
3."y(x)=(4x)^3-18x^2+6x"
"=" "(4x^3)=64x^3"
"=64x^3-18x^2+6x"
we apply the sum/difference rule
"=d\/dx(64x^3)-d\/dx(18x^2)+d\/dx(6x)"
"=192x^2-36x+6"
4."h(x)=(3x+4)^2"
here we apply the chain rule
"d\/dx[f(g(x)]=d\/d[g(x)][f(x)]*d\/dx(g(x))"
let "f(x)=2"
"g(x)=3x+4)"
"d\/dx[(3x+4)^2]=2*(3x+4) *d\/dx(3x+4)"
"d\/dx(3x+4)= 3"
"=3(6x+8)"
"=18x+24"
5."h(x)= 9x"2/3 + "2\/4\\sqrt{ x}"
here we apply the sum rule
d/dx(9x2/3) =6x-1/3
to get the derivative of d/dx ("2\/4\n\u200b\n \\sqrt{x}" )
= "2\/4d\/dx(1\/\n\u200b\n \\sqrt{x}" )
"=2\/4(-1\/2(x^-1\/2-1))"
"=-1\/4x"3/2
=6x-1/3-1/4x3/2
Comments
Leave a comment