Question #304373

Let f(x)= (x^2-2x)/(x^2-4)

For the function above, please find the following:

a) The domain of the function

b) The real zeroes of the function

c) The limit as × approaches 2 of f(x).

d) Plot f(x)



1
Expert's answer
2022-03-02T09:39:55-0500
f(x)=x22xx24f(x)=\dfrac{x^2-2x}{x^2-4}

a)


x240=>(x2)(x+2)0x^2-4\not=0=>(x-2)(x+2)\not=0

x2,x2x\not=-2, x\not=2

Domain: (,2)(2,2)(2,)(-\infin, -2)\cup (-2, 2)\cup (2, \infin)


b)

f(x)=0=>x22xx24=0f(x)=0=>\dfrac{x^2-2x}{x^2-4} =0

x(x2)=0,x2,x2x(x-2)=0, x\not=-2, x\not=2

Zeroes: x=0x=0


c)


limx2f(x)=limx2x22xx24=limx2x(x2)(x2)(x+2)\lim\limits_{x\to 2}f(x)=\lim\limits_{x\to 2}\dfrac{x^2-2x}{x^2-4}=\lim\limits_{x\to 2}\dfrac{x(x-2)}{(x-2)(x+2)}

=limx2xx+2=22+2=12=\lim\limits_{x\to 2}\dfrac{x}{x+2}=\dfrac{2}{2+2}=\dfrac{1}{2}

d)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS