Evaluate this integral x(x²+4)dx / x⁴+9
Substitute "x^2=u, 2xdx=du"
"=\\dfrac{1}{2}\\int \\dfrac{u}{u^2+9}du+2\\int \\dfrac{du}{u^2+9}"
"\\dfrac{1}{2}\\int \\dfrac{u}{u^2+9}du"
"t=u^2+9, dt=2udu"
"\\dfrac{1}{2}\\int \\dfrac{u}{u^2+9}du=\\dfrac{1}{4}\\int \\dfrac{dt}{t}="
"=\\dfrac{1}{4}\\ln |t|+C_1=\\dfrac{1}{4}\\ln(u^2+9)+C_1"
"=\\dfrac{1}{4}\\ln(x^4+9)+C_1"
"2\\int \\dfrac{du}{u^2+9}"
"s=\\dfrac{u}{3}, ds=\\dfrac{1}{3}du"
"2\\int \\dfrac{du}{u^2+9}=2\\int \\dfrac{3ds}{9s^2+9}=\\dfrac{2}{3}\\int \\dfrac{ds}{1+s^2}"
"=\\dfrac{2}{3}\\tan^{-1}(s)+C_2=\\dfrac{2}{3}\\tan^{-1}(\\dfrac{u}{3})+C_2"
Then
Comments
Leave a comment