1. Let f be the function deÖned by
f (x) = x^2/(-2x + 1)^2
(a) Determine the vertical and horizontal asymptotes (show all limits).
(b) Use the sign pattern for f'(x) to determine
(i) the interval(s) over which f rises and where it falls;
(ii) the local extrema.
(c) Use the sign pattern for f''(x) to determine
(i) where the graph of f is concave up and where it is concave down.
(ii) the inflection points (if any)
(a)
"-2x+1\\not=0=>x\\not=1\/2"
"D(f): (-\\infin, 1\/2)\\cup (1\/2 , \\infin)"
"\\lim\\limits_{x\\to(1\/2)^+}\\dfrac{x^2 }{(-2x+1)^2} =\\infin"
Vertical asymptote: "x=1\/2"
"=\\lim\\limits_{x\\to-\\infin}\\dfrac{1}{(-2+1\/x)^2}=1\/4"
"=\\lim\\limits_{x\\to\\infin}\\dfrac{1}{(-2+1\/x)^2}=1\/4"
Horizontal asymptote: "y=1\/4"
There is no slant (oblique) asymptote.
(b)
"=\\dfrac{2x(-2x+1)^2-x^2(2)(-2)(-2x+1) }{(-2x+1)^4}"
"=\\dfrac{-4x^2+2x+4x^2}{(-2x+1)^3} =\\dfrac{2x}{(-2x+1)^3}"
Find critical number(s)
"x=0"
(i)
If "x<0, f'(x)<0, f(x)" decreases.
If "0<x<1\/2, f'(x)>0, f(x)" increases.
If "x>1\/2, f'(x)<0, f(x)" decreases.
The function "f" increases on "(0, 1\/2)."
The function "f" decreases on "(-\\infin, 0)\\cup (1\/2, \\infin)."
(ii)
The function "f" has a local minimum at "x=0."
The function "f" has no a local maximum.
(c)
"=2\\cdot\\dfrac{(-2x+1)^3-x(3)(-2)(-2x+1)^2 }{(-2x+1)^6}"
"=2\\cdot\\dfrac{-2x+1+6x}{(-2x+1)^4} =\\dfrac{8x+2}{(-2x+1)^4}"
Find the inflection point(s)
"x=-1\/4"
(i)
If "x<-1\/4, f''(x)<0, f(x)" is concave down.
If "-1\/4<x<1\/2, f''(x)>0, f(x)" is concave up.
If "x>1\/2, f''(x)>0, f(x)" is concave up.
The function "f" is concave up on "(-1\/4, 1\/2)\\cup (1\/2, \\infin)."
The function "f" is concave down on "(-\\infin, -1\/4)."
(ii)
The function "f" has inflection point at "x=-1\/4."
Comments
Leave a comment