If ux² + y² +2²,v=x+y+z₁w=xy+yz+zx, then the value of the jacobian is d(u,v,w)/d(x,y,z)
u=x²+y²+z²,v=x+y+z,w=xy+yz+zxu=x² + y² +z²,v=x+y+z,w=xy+yz+zxu=x²+y²+z²,v=x+y+z,w=xy+yz+zx
Jacobian =∣∂u∂x∂u∂y∂u∂z∂v∂x∂v∂y∂v∂z∂w∂x∂w∂y∂w∂z∣=\begin{vmatrix}\dfrac{\partial u}{\partial x}&\dfrac{\partial u}{\partial y}&\dfrac{\partial u}{\partial z} \\\dfrac{\partial v}{\partial x}&\dfrac{\partial v}{\partial y}&\dfrac{\partial v}{\partial z} \\\dfrac{\partial w}{\partial x}&\dfrac{\partial w}{\partial y}&\dfrac{\partial w}{\partial z} \end{vmatrix}=∣∣∂x∂u∂x∂v∂x∂w∂y∂u∂y∂v∂y∂w∂z∂u∂z∂v∂z∂w∣∣
=∣2x2y2z111y+zx+zx+y∣=−2∣111xyzy+zx+zx+y∣=−2[y(x+y)−z(x+z)−x(x+y)+z(y+z)+x(x+z)−y(y+z)]=−2[xy+y2−xz−z2−x2−xy+yz+z2+x2+xz−y2−yz]=−2(0)=0=\begin{vmatrix}2x&2y&2z \\1&1&1 \\y+z&x+z&x+y\end{vmatrix} \\=-2\begin{vmatrix}1&1&1 \\x&y&z \\y+z&x+z&x+y\end{vmatrix} \\=-2[y(x+y)-z(x+z)-x(x+y)+z(y+z)+x(x+z)-y(y+z)] \\=-2[xy+y^2-xz-z^2-x^2-xy+yz+z^2+x^2+xz-y^2-yz] \\=-2(0) \\=0=∣∣2x1y+z2y1x+z2z1x+y∣∣=−2∣∣1xy+z1yx+z1zx+y∣∣=−2[y(x+y)−z(x+z)−x(x+y)+z(y+z)+x(x+z)−y(y+z)]=−2[xy+y2−xz−z2−x2−xy+yz+z2+x2+xz−y2−yz]=−2(0)=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment