Answer to Question #300532 in Calculus for Aquib

Question #300532

If ux² + y² +2²,v=x+y+z₁w=xy+yz+zx, then the value of the jacobian is d(u,v,w)/d(x,y,z)


1
Expert's answer
2022-02-22T10:53:51-0500

Solution:

u=x²+y²+z²,v=x+y+z,w=xy+yz+zxu=x² + y² +z²,v=x+y+z,w=xy+yz+zx

Jacobian =uxuyuzvxvyvzwxwywz=\begin{vmatrix}\dfrac{\partial u}{\partial x}&\dfrac{\partial u}{\partial y}&\dfrac{\partial u}{\partial z} \\\dfrac{\partial v}{\partial x}&\dfrac{\partial v}{\partial y}&\dfrac{\partial v}{\partial z} \\\dfrac{\partial w}{\partial x}&\dfrac{\partial w}{\partial y}&\dfrac{\partial w}{\partial z} \end{vmatrix}

=2x2y2z111y+zx+zx+y=2111xyzy+zx+zx+y=2[y(x+y)z(x+z)x(x+y)+z(y+z)+x(x+z)y(y+z)]=2[xy+y2xzz2x2xy+yz+z2+x2+xzy2yz]=2(0)=0=\begin{vmatrix}2x&2y&2z \\1&1&1 \\y+z&x+z&x+y\end{vmatrix} \\=-2\begin{vmatrix}1&1&1 \\x&y&z \\y+z&x+z&x+y\end{vmatrix} \\=-2[y(x+y)-z(x+z)-x(x+y)+z(y+z)+x(x+z)-y(y+z)] \\=-2[xy+y^2-xz-z^2-x^2-xy+yz+z^2+x^2+xz-y^2-yz] \\=-2(0) \\=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment