Find the critical point(s)
∂ f ∂ x = 4 y 2 + 3 y \dfrac{\partial f}{\partial x}=4y^2+3y ∂ x ∂ f = 4 y 2 + 3 y
∂ f ∂ y = 8 x y + 3 x \dfrac{\partial f}{\partial y}=8xy+3x ∂ y ∂ f = 8 x y + 3 x Then
{ ∂ f ∂ x = 0 ∂ f ∂ y = 0 \begin{cases}
\dfrac{\partial f}{\partial x}=0 \\ \\
\dfrac{\partial f}{\partial y}=0
\end{cases} ⎩ ⎨ ⎧ ∂ x ∂ f = 0 ∂ y ∂ f = 0
{ 4 y 2 + 3 y = 0 8 x y + 3 x = 0 \begin{cases}
4y^2+3y=0 \\
8xy+3x=0
\end{cases} { 4 y 2 + 3 y = 0 8 x y + 3 x = 0 Critical points ( 0 , 0 ) , ( 0 , − 3 / 4 ) (0, 0), (0, -3/4) ( 0 , 0 ) , ( 0 , − 3/4 )
Point ( 0 , 0 ) (0,0) ( 0 , 0 )
∂ 2 f ∂ x 2 ( 0 , 0 ) = 0 \dfrac{\partial^2 f}{\partial x^2}(0,0)=0 ∂ x 2 ∂ 2 f ( 0 , 0 ) = 0
∂ 2 f ∂ y 2 ( 0 , 0 ) = 8 ( 0 ) = 0 \dfrac{\partial^2 f}{\partial y^2}(0,0)=8(0)=0 ∂ y 2 ∂ 2 f ( 0 , 0 ) = 8 ( 0 ) = 0
∂ 2 f ∂ x ∂ y ( 0 , 0 ) = ∂ 2 f ∂ y ∂ x ( 0 , 0 ) = 8 ( 0 ) + 3 = 3 \dfrac{\partial^2 f}{\partial x\partial y}(0,0)=\dfrac{\partial^2 f}{\partial y\partial x}(0,0)=8(0)+3=3 ∂ x ∂ y ∂ 2 f ( 0 , 0 ) = ∂ y ∂ x ∂ 2 f ( 0 , 0 ) = 8 ( 0 ) + 3 = 3
D ( 0 , 0 ) = ∣ 0 3 3 0 ∣ = − 9 < 0 D(0,0)=\begin{vmatrix}
0 & 3 \\
3 & 0
\end{vmatrix}=-9<0 D ( 0 , 0 ) = ∣ ∣ 0 3 3 0 ∣ ∣ = − 9 < 0 Then the f ( 0 , 0 ) f(0,0) f ( 0 , 0 ) is not a local maximum or minimum.
The critical point ( 0 , 0 ) (0,0) ( 0 , 0 ) is a saddle point.
Point ( 0 , − 3 / 4 ) (0,-3/4) ( 0 , − 3/4 )
∂ 2 f ∂ x 2 ( 0 , − 3 / 4 ) = 0 \dfrac{\partial^2 f}{\partial x^2}(0,-3/4)=0 ∂ x 2 ∂ 2 f ( 0 , − 3/4 ) = 0
∂ 2 f ∂ y 2 ( 0 , − 3 / 4 ) = 8 ( 0 ) = 0 \dfrac{\partial^2 f}{\partial y^2}(0,-3/4)=8(0)=0 ∂ y 2 ∂ 2 f ( 0 , − 3/4 ) = 8 ( 0 ) = 0
∂ 2 f ∂ x ∂ y ( 0 , − 3 / 4 ) = ∂ 2 f ∂ y ∂ x ( 0 , − 3 / 4 ) \dfrac{\partial^2 f}{\partial x\partial y}(0,-3/4)=\dfrac{\partial^2 f}{\partial y\partial x}(0,-3/4) ∂ x ∂ y ∂ 2 f ( 0 , − 3/4 ) = ∂ y ∂ x ∂ 2 f ( 0 , − 3/4 )
= 8 ( − 3 / 4 ) + 3 = − 3 =8(-3/4)+3=-3 = 8 ( − 3/4 ) + 3 = − 3
D ( 0 , 0 ) = ∣ 0 − 3 − 3 0 ∣ = − 9 < 0 D(0,0)=\begin{vmatrix}
0 & -3 \\
-3 & 0
\end{vmatrix}=-9<0 D ( 0 , 0 ) = ∣ ∣ 0 − 3 − 3 0 ∣ ∣ = − 9 < 0 Then the f ( 0 , − 3 / 4 ) f(0,-3/4) f ( 0 , − 3/4 ) is not a local maximum or minimum.
The critical point ( 0 , − 3 / 4 ) (0,-3/4) ( 0 , − 3/4 ) is a saddle point.
Comments