Locate and classify all critical points for f(x, y) = 4y^2x + 3xy
Find the critical point(s)
"\\dfrac{\\partial f}{\\partial y}=8xy+3x"
Then
"\\begin{cases}\n 4y^2+3y=0 \\\\ \n 8xy+3x=0\n\\end{cases}"
Critical points "(0, 0), (0, -3\/4)"
Point "(0,0)"
"\\dfrac{\\partial^2 f}{\\partial y^2}(0,0)=8(0)=0"
"\\dfrac{\\partial^2 f}{\\partial x\\partial y}(0,0)=\\dfrac{\\partial^2 f}{\\partial y\\partial x}(0,0)=8(0)+3=3"
Then the "f(0,0)" is not a local maximum or minimum.
The critical point "(0,0)" is a saddle point.
Point "(0,-3\/4)"
"\\dfrac{\\partial^2 f}{\\partial y^2}(0,-3\/4)=8(0)=0"
"\\dfrac{\\partial^2 f}{\\partial x\\partial y}(0,-3\/4)=\\dfrac{\\partial^2 f}{\\partial y\\partial x}(0,-3\/4)"
"=8(-3\/4)+3=-3"
Then the "f(0,-3\/4)" is not a local maximum or minimum.
The critical point "(0,-3\/4)" is a saddle point.
Comments
Leave a comment