Check the limit of the function f(x,y) = 3x^2y/(x^2 + y^2) at origin exist or not
Let us use the polar coordinates "\\begin{cases} x=r\\cos \\theta \\\\ y=r\\sin\\theta \\end{cases}" , then the limit "(x,y)\\to (0,0)" corresponds to the limit "r\\to 0". We have
"f(r,\\theta)=\\frac{3r^3\\cos^2\\theta \\sin \\theta}{r^2}=3r\\cos^2\\theta \\sin \\theta"
We see that the limit "\\lim_{r\\to 0} f(r,\\theta) =0" exists and independent of "\\theta" (as "3\\cos^2\\theta \\sin \\theta" is a bounded quantity, so "\\lim_{r\\to 0}r\\cdot (\\text{bounded quantity})=0")
Comments
Leave a comment