Show that Sigma infinity n=1 ( -1)^n+1 5÷7n+2 is conditionally convergent
"\\sum _{n=1}^{\\infty \\:}\\left(-1\\right)^{n+1}\\frac{5}{7n+2}\n\\\\=5\\cdot \\sum _{n=1}^{\\infty \\:}\\left(-1\\right)^{n+1}\\frac{1}{7n+2}\n\\\\=5\\cdot \\sum _{n=1}^{\\infty \\:}\\left(-1\\right)^n\\left(-1\\right)\\frac{1}{7n+2}\n\\\\=5\\left(-\\sum _{n=1}^{\\infty \\:}\\left(-1\\right)^n\\frac{1}{7n+2}\\right)\n\\\\=5\\left(-\\mathrm{converges}\\right)\\ \\ [\\text{using Alternating series test}]\n\\\\=\\mathrm{converges}"
Here, "a_n=\\dfrac1{7n+1}" which is positive and decreasing sequence.
Also, "\\lim_{n\\rightarrow \\infty}a_n=\\lim_{n\\rightarrow \\infty}\\dfrac1{7n+1}=0"
Thus, by alternating series test "\\sum _{n=1}^{\\infty \\:}\\left(-1\\right)^{n}a_n\\ or\\ \\sum _{n=1}^{\\infty \\:}\\left(-1\\right)^{n+1}a_n" converge.
Comments
Leave a comment