Answer to Question #300396 in Calculus for sysysy

Question #300396

16 a Find the y-intercept of the tangent to f (x) = x In x at the point where: i x = 1 it x = 2 iii x = 3. b Make a conjecture about the y-intercept of the tangent to f (x) = x In x at the point where = a, a > 0. c Prove your conjecture algebraically. 17 Find the axes intercepts of the tangent to y = x2 ex at x = 1. 18 Find the exact area of the shaded triangle. 



1
Expert's answer
2022-02-22T03:22:28-0500

16.

a.

f(x)=(xlnx)=lnx+x(1/x)=lnx+1f'(x)=(x\ln x)'=\ln x+x(1/x)=\ln x+1

The equation of the tangent line at x=x0x=x_0


y=f(x0)xf(x0)x0+f(x0)y=f'(x_0)x-f'(x_0)x_0+f(x_0)

i. x=1x=1


f(1)=1ln(1)=0f(1)=1\ln(1)=0

f(1)=ln(1)+1=1f'(1)=\ln (1)+1=1

The equation of the tangent line at x=1x=1

y=x1y=x-1

x=0,y=1x=0, y=-1

yy -intercept: (0,1)(0, -1)


ii. x=2x=2


f(2)=2ln(2)f(2)=2\ln(2)

f(2)=ln(2)+1f'(2)=\ln (2)+1

The equation of the tangent line at x=2x=2

y=(ln(2)+1)x2ln(2)2+2ln(2)y=(\ln(2)+1)x-2\ln (2)-2+2\ln (2)

y=(ln(2)+1)x2y=(\ln(2)+1)x-2

x=0,y=2x=0, y=-2

yy -intercept: (0,2)(0, -2)


iii. x=3x=3


f(3)=3ln(3)f(3)=3\ln(3)

f(3)=ln(3)+1f'(3)=\ln (3)+1

The equation of the tangent line at x=3x=3

y=(ln(3)+1)x3ln(3)3+3ln(3)y=(\ln(3)+1)x-3\ln (3)-3+3\ln (3)

y=(ln(3)+1)x3y=(\ln(3)+1)x-3

x=0,y=3x=0, y=-3

yy -intercept: (0,3)(0, -3)


b.

We see that he yy-intercept of the tangent to f(x)=xlnxf (x) = x \ln x at the point where x=a,a>0x= a, a > 0 is (0,a).(0, -a).


c. The equation of the tangent line at x=a,a>0x=a, a>0


y=f(a)xf(a)a+f(a)y=f'(a)x-f'(a)a+f(a)


Substitute


y=f(a)xf(a)a+f(a)y=f'(a)x-f'(a)a+f(a)

=(ln(a)+1)xaln(a)a+aln(a)=(\ln(a)+1)x-a\ln (a)-a+a\ln(a)

=(ln(a)+1)xa=(\ln(a)+1)x-a

When x=0,x=0, y=a.y=-a.

yy -intercept: (0,a)(0, -a)


17.


f=(x2ex)=2xex+x2exf'=(x^2e^x)'=2xe^x+x^2e^x

The equation of the tangent line at x=x0x=x_0


y=f(x0)xf(x0)x0+f(x0)y=f'(x_0)x-f'(x_0)x_0+f(x_0)

x=1x=1


f(1)=ef(1)=e

f(1)=3ef'(1)=3e

The equation of the tangent line at x=1x=1

y=3ex2ey=3ex-2e

x=0,y=2ex=0, y=-2e

yy -intercept: (0,2e)(0, -2e)


y=0,0=3ex2ey=0, 0=3ex-2e

x=2/3x=2/3

xx -intercept: (2/3,0)(2/3, 0)


18.


f=(3xex/2)=3ex/2+32xex/2f'=(3xe^{x/2})'=3e^{x/2}+\dfrac{3}{2}xe^{x/2}

The equation of the tangent line at x=x0x=x_0

y=f(x0)xf(x0)x0+f(x0)y=f'(x_0)x-f'(x_0)x_0+f(x_0)

x=1x=-1

f(1)=3e1/2f(-1)=-3e^{-1/2}

f(1)=32e1/2f'(-1)=\dfrac{3}{2}e^{-1/2}

The equation of the tangent line at x=1x=-1

y=32e1/2x32e1/2y=\dfrac{3}{2}e^{-1/2}x-\dfrac{3}{2}e^{-1/2}

x=0,y=32e1/2x=0, y=-\dfrac{3}{2}e^{-1/2}

yy -intercept: (0,32e1/2)(0, -\dfrac{3}{2}e^{-1/2})

y=0,0=32e1/2x32e1/2y=0, 0=\dfrac{3}{2}e^{-1/2}x-\dfrac{3}{2}e^{-1/2}

x=1x=1

xx -intercept: (1,0)(1, 0)

Area=12(1)(32e1/2)=34e1/2(units2)Area=\frac{1}{2}(1)(\dfrac{3}{2}e^{-1/2})=\dfrac{3}{4}e^{-1/2}({units}^2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment