16.
a.
f′(x)=(xlnx)′=lnx+x(1/x)=lnx+1 The equation of the tangent line at x=x0
y=f′(x0)x−f′(x0)x0+f(x0) i. x=1
f(1)=1ln(1)=0
f′(1)=ln(1)+1=1 The equation of the tangent line at x=1
y=x−1
x=0,y=−1y -intercept: (0,−1)
ii. x=2
f(2)=2ln(2)
f′(2)=ln(2)+1 The equation of the tangent line at x=2
y=(ln(2)+1)x−2ln(2)−2+2ln(2)
y=(ln(2)+1)x−2
x=0,y=−2y -intercept: (0,−2)
iii. x=3
f(3)=3ln(3)
f′(3)=ln(3)+1 The equation of the tangent line at x=3
y=(ln(3)+1)x−3ln(3)−3+3ln(3)
y=(ln(3)+1)x−3
x=0,y=−3y -intercept: (0,−3)
b.
We see that he y-intercept of the tangent to f(x)=xlnx at the point where x=a,a>0 is (0,−a).
c. The equation of the tangent line at x=a,a>0
y=f′(a)x−f′(a)a+f(a)
Substitute
y=f′(a)x−f′(a)a+f(a)
=(ln(a)+1)x−aln(a)−a+aln(a)
=(ln(a)+1)x−aWhen x=0, y=−a.
y -intercept: (0,−a)
17.
f′=(x2ex)′=2xex+x2ex The equation of the tangent line at x=x0
y=f′(x0)x−f′(x0)x0+f(x0) x=1
f(1)=e
f′(1)=3e The equation of the tangent line at x=1
y=3ex−2e
x=0,y=−2ey -intercept: (0,−2e)
y=0,0=3ex−2e
x=2/3 x -intercept: (2/3,0)
18.
f′=(3xex/2)′=3ex/2+23xex/2 The equation of the tangent line at x=x0
y=f′(x0)x−f′(x0)x0+f(x0) x=−1
f(−1)=−3e−1/2
f′(−1)=23e−1/2 The equation of the tangent line at x=−1
y=23e−1/2x−23e−1/2
x=0,y=−23e−1/2y -intercept: (0,−23e−1/2)
y=0,0=23e−1/2x−23e−1/2
x=1 x -intercept: (1,0)
Area=21(1)(23e−1/2)=43e−1/2(units2)
Comments
Leave a comment