dxdyβ=x2+y2eβx=f(x,y)
i)
By Euler's method,
yn+1β=ynβ+hf(xnβ,ynβ)y2β=y1β+0.1Γ[x12β+y12βeβx1β]=1.005+0.1Γ[0.12+1.0052eβ0.1]=1.005+0.1Γ0.9239=1.0973
ii)
By Euler's method,
yn+1β=ynβ+hf(xnβ,ynβ)y3β=y2β+0.1Γ[x22β+y22βeβx2β]=1.0973+0.1Γ[0.22+1.09732eβ0.2]=1.0973+0.1Γ0.9858=1.1958
iii)
By Milneβs predictor method,
yn+1,pβ=ynβ3β+34hβ(2fnβ2ββfnβ1β+2fnβ)y4,pβ=y0β+34Γ0.1β(2f1ββf2β+2f3β)=1+30.4β(2Γ1.005β1.0973+2Γ1.1958)=1+0.4405=1.4405
By Milneβs corrector method,
yn+1,cβ=ynβ1β+3hβ(fn+1β+fnβ1β+4fnβ)y4,pβ=y2β+30.1β(f4β+f2β+4f3β)=1.0973+30.1β(1.4405+1.0973+4Γ1.1958)=1.0973+2.1963=3.2936
Comments