Question #300554

Given 𝑑𝑦





𝑑π‘₯





= π‘₯ π‘₯





2 + 𝑦





2





𝑒





βˆ’π‘₯





and 𝑦(0) = 1, 𝑦(0.1) = 1.005, find





i) 𝑦 0.2 by Euler’s method





ii) 𝑦 0.3 by Modified Euler’s method





iii) 𝑦(0.4) by Milne’s predictor - corrector method.

1
Expert's answer
2022-02-22T15:23:16-0500

dydx=x2+y2eβˆ’x=f(x,y)\frac{dy}{dx}=x^2+y^2e^{-x}=f(x,y)\\

i)

By Euler's method,

yn+1=yn+hf(xn,yn)y2=y1+0.1Γ—[x12+y12eβˆ’x1]=1.005+0.1Γ—[0.12+1.0052eβˆ’0.1]=1.005+0.1Γ—0.9239=1.0973y_{n+1}=y_n+hf(x_n,y_n)\\ y_2=y_1+0.1Γ—[x_1^2+y_1^2e^{-x_1}]\\ =1.005+0.1Γ—[0.1^2+1.005^2e^{-0.1}]\\ =1.005+0.1Γ—0.9239 =1.0973


ii)

By Euler's method,

yn+1=yn+hf(xn,yn)y3=y2+0.1Γ—[x22+y22eβˆ’x2]=1.0973+0.1Γ—[0.22+1.09732eβˆ’0.2]=1.0973+0.1Γ—0.9858=1.1958y_{n+1}=y_n+hf(x_n,y_n)\\ y_3=y_2+0.1Γ—[x_2^2+y_2^2e^{-x_2}]\\ =1.0973+0.1Γ—[0.2^2+1.0973^2e^{-0.2}]\\ =1.0973+0.1Γ—0.9858 =1.1958


iii)

By Milne’s predictor method,

yn+1,p=ynβˆ’3+4h3(2fnβˆ’2βˆ’fnβˆ’1+2fn)y4,p=y0+4Γ—0.13(2f1βˆ’f2+2f3)=1+0.43(2Γ—1.005βˆ’1.0973+2Γ—1.1958)=1+0.4405=1.4405y_{n+1,p}=y_{n-3}+\frac{4h}{3}(2f_{n-2}-f_{n-1}+2f_n)\\ y_{4,p}=y_{0}+\frac{4Γ—0.1}{3}(2f_{1}-f_{2}+2f_3)\\ =1+\frac{0.4}{3}(2Γ—1.005-1.0973+2Γ—1.1958)\\ =1+0.4405\\ =1.4405


By Milne’s corrector method,

yn+1,c=ynβˆ’1+h3(fn+1+fnβˆ’1+4fn)y4,p=y2+0.13(f4+f2+4f3)=1.0973+0.13(1.4405+1.0973+4Γ—1.1958)=1.0973+2.1963=3.2936y_{n+1,c}=y_{n-1}+\frac{h}{3}(f_{n+1}+f_{n-1}+4f_n)\\ y_{4,p}=y_{2}+\frac{0.1}{3}(f_{4}+f_{2}+4f_3)\\ =1.0973+\frac{0.1}{3}(1.4405+1.0973+4Γ—1.1958)\\ =1.0973+2.1963\\ =3.2936


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS