Find dy/dx of the function xy2 + e6x y3 = cos(x2 + 2) at the point (1,1) by using implicit differentiation.
Using implicit differentiation we get
y2+2xyy′+6e6xy3+e6x3y2y′=−sin(x2+2)2x.y^2+2xyy'+6e^{6x}y^3+e^{6x}3y^2y'=-\sin(x^2+2)2x.y2+2xyy′+6e6xy3+e6x3y2y′=−sin(x2+2)2x.
It follows that at the point (1,1)(1,1)(1,1) we have
1+2y′+6e6+3e6y′=−2sin(3).1+2y'+6e^{6}+3e^{6}y'=-2\sin(3).1+2y′+6e6+3e6y′=−2sin(3).
Therefore,
(2+3e6)y′=−1−6e6−2sin(3),(2+3e^{6})y'=-1-6e^{6}-2\sin(3),(2+3e6)y′=−1−6e6−2sin(3),
and we conclude that
dydx=y′=−1+6e6+2sin(3)2+3e6.\frac{dy}{dx}=y'=-\frac{1+6e^{6}+2\sin(3)}{2+3e^{6}}.dxdy=y′=−2+3e61+6e6+2sin(3).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments