find dy/dx when y= "(1+x\/1-x)" -2
"\\displaystyle\ny=\\left(\\frac{1+x}{1-x}\\right)^2"
Let "\\displaystyle\np=\\frac{1+x}{1-x}," then "\\displaystyle\ny=p^2"
From "\\displaystyle\ny=p^2,\\ \\frac{dy}{dp}=2p".
Also, from "\\displaystyle\np=\\frac{1+x}{1-x},\\ \\frac{dp}{dx}=\\frac{(1-x)(1)-(1+x)(-1)}{(1-x)^2}=\\frac{2}{(1-x)^2}", by quotient rule.
Thus by chain rule, we have that;
"\\displaystyle\n\\frac{dy}{dx}=\\frac{dy}{dp}\\cdot\\frac{dp}{dx}=2p\\cdot\\frac{2}{(1-x)^2}=2\\left(\\frac{1+x}{1-x}\\right)\\cdot\\frac{2}{(1-x)^2}=\\frac{4(1+x)}{(1-x)^3}"
Comments
Leave a comment