Find all possible Taylor's series and Laurent series expansions of f(z) = (2z-3) /(z-2) (z-1) about z=0?
Consider "f(z)=\\frac{z-1}{z^{2}-2 z-3}=\\frac{z-1}{(z-3)(z+1)}"
Using partial fraction we get
"\\frac{z-1}{(z-3)(z+1)}=\\frac{a}{z-3}+\\frac{b}{z+1}"
i.e. z-1=a(z+1)+b(z-3)
put z=3 , we get "a=\\frac{1}{2}"
put z=-1 , we get "b=\\frac{1}{2}"
"\\frac{z-1}{(z-3)(z+1)}=\\frac{\\frac{1}{2}}{z-3}+\\frac{\\frac{1}{2}}{z+1}"
Hence f(z) is not analytic at z=-1 and z=3
"\\therefore" f(z) is analytic in
"* |z|<1 \n\\\\\n* 1<|z|<3 \n\\\\\n* |z|>3"
(i)
"|z|<1 \n\n \\\\\\because|z|<1,|z|<3"
"\\begin{aligned}\n\n&\\therefore f(z)=\\frac{\\frac{1}{2}}{z-3}+\\frac{\\frac{1}{2}}{z+1} \\\\\n\n&=\\frac{1}{2} \\cdot \\frac{1}{-3} \\cdot \\frac{1}{1-\\frac{z}{3}}+\\frac{1}{2} \\frac{1}{1+z} \\\\\n\n&=-\\frac{1}{6}\\left(1-\\frac{z}{3}\\right)^{-1}+\\frac{1}{2}(1+z)^{-1}\n\n\\end{aligned}"
"\\begin{aligned}\n\n&=-\\frac{1}{6}\\left(1+\\frac{z}{3}+\\left(\\frac{z}{3}\\right)^{2}+\\left(\\frac{z}{3}\\right)^{3}+\\ldots \\ldots\\right)+\\frac{1}{2}\\left(1-z+z^{2}-z^{3}+\\ldots \\ldots\\right) \\\\\n\n&f(z)=\\frac{1}{3}-\\frac{5}{9} z+\\frac{13}{27} z^{2}-\\ldots \\ldots\n\n\\end{aligned}"
Above is required Taylor's series
(ii) 1<|z|<3
We get "\\left|\\frac{1}{z}\\right|<1" and "\\left|\\frac{z}{3}\\right|<1"
"\\begin{aligned}\n\n&\\therefore f(z)=\\frac{\\frac{1}{2}}{z-3}+\\frac{\\frac{1}{2}}{z+1} \\\\\n\n&=\\frac{1}{2} \\cdot \\frac{1}{-3} \\cdot \\frac{1}{1-\\frac{z}{3}}+\\frac{1}{2} \\cdot \\frac{1}{z} \\cdot \\frac{1}{1+\\frac{1}{z}} \\\\\n\n&=\\frac{1}{-6} \\cdot \\frac{1}{1-\\frac{z}{3}}+\\frac{1}{2 z} \\cdot \\frac{1}{1+\\frac{1}{z}} \\\\\n\n&=-\\frac{1}{6}\\left(1-\\frac{z}{3}\\right)^{-1}+\\frac{1}{2 z}\\left(1+\\frac{1}{z}\\right)^{-1} \\\\\n\n&=-\\frac{1}{6}\\left(1+\\frac{z}{3}+\\left(\\frac{z}{3}\\right)^{2}+\\left(\\frac{z}{3}\\right)^{3}+\\ldots \\ldots\\right)+\\frac{1}{2 z}\\left(1-\\left(\\frac{1}{z}\\right)+\\left(\\frac{1}{z}\\right)^{2}-\\left(\\frac{1}{z}\\right)^{3}+\\ldots\\right)^{2}+\\frac{1}{2}\\left(\\frac{1}{z}-\\left(\\frac{1}{z}\\right)^{2}+\\left(\\frac{1}{z}\\right)^{3}-\\left(\\frac{1}{z}\\right)^{4}+\\ldots\\right. \\\\\n\n&f(z)=-\\frac{1}{6}\\left(1+\\frac{z}{3}+\\left(\\frac{z}{3}\\right)^{2}+\\left(\\frac{z}{3}\\right)^{3}+\\ldots\\right)\n\n\\end{aligned}"
This is required Laurent's series
(iii) |z|>3
"\\begin{aligned}\n\n&\\because|z|>3, \\text { clearly, }|z|>1 \\\\\n\n&\\therefore\\left|\\frac{z}{3}\\right|>1 \\text { and }|z|>1 \\\\\n\n&\\text { i.e. }\\left|\\frac{3}{z}\\right|<1 \\text { and }\\left|\\frac{1}{z}\\right|<1 \\\\\n\n&\\therefore f(z)=\\frac{\\frac{1}{2}}{z-3}+\\frac{\\frac{1}{2}}{z+1} \\\\\n\n&=\\frac{1}{2 z} \\cdot \\frac{1}{1-\\frac{3}{z}}+\\frac{1}{2 z} \\cdot \\frac{1}{1+\\frac{1}{z}} \\\\\n\n&=\\frac{1}{2 z}\\left(1-\\frac{3}{z}\\right)^{-1}+\\frac{1}{2 z}\\left(1+\\frac{1}{z}\\right)^{-1} \\\\\n\n&=\\frac{1}{2 z}\\left(1+\\left(\\frac{3}{z}\\right)+\\left(\\frac{3}{z}\\right)^{2}+\\left(\\frac{3}{z}\\right)^{3}+\\ldots\\right)+\\frac{1}{2 z}\\left(1-\\left(\\frac{1}{z}\\right)+\\left(\\frac{1}{z}\\right)^{2}-\\left(\\frac{1}{z}\\right)^{3}+\\ldots .\\right) \\\\\n\n&=\\frac{1}{z}+\\frac{1}{z^{2}}+\\frac{5}{z^{3}}+\\frac{13}{z^{4}}+\\ldots \\cdots \\cdots \\\\\n\n&f(z)=\\frac{1}{z}+\\frac{1}{z^{2}}+\\frac{5}{z^{3}}+\\frac{13}{z^{4}}+\\ldots \\ldots \\ldots .\n\n\\end{aligned}"
This is the required Laurent's series
Comments
Leave a comment