What is the Laplace transform of t^3 + cos3t-e^-3t?
We have "F_{(t)}= {t^3 + \\cos{(3t)}-e^{-3t}}"
We proceed to use the rules for Laplace transform and we proceed with each one of the terms:
"\\mathscr{L}[F_{(t)}]_{(s)}=\\mathscr{L}[{t^3 + \\cos{(3t)}-e^{-3t}}]_{(s)}\n\\\\ \\mathscr{L}[F_{(t)}]_{(s)}=\\mathscr{L}[{t^3}]_{(s)}+\\mathscr{s}[{\\cos{(3t)}}]_{(s)}-\\mathscr{L}[{e^{-3t}}]_{(s)}\n\\\\ \\mathscr{L}[F_{(t)}]_{(s)}=\\dfrac{3!}{s^{3+1}}+\\dfrac{s}{s^2+3^2}-\\dfrac{1}{s-{(-3)}}\n\\\\ \\therefore \\mathscr{L}[F_{(t)}]_{(s)}=\\dfrac{6}{s^{4}}+\\dfrac{s}{s^2+9}-\\dfrac{1}{s+3}"
In conclusion, the Laplace transform is "\\mathscr{L}[F_{(t)}]_{(s)}=\\dfrac{6}{s^{4}}+\\dfrac{s}{s^2+9}-\\dfrac{1}{s+3}".
Comments
Leave a comment