Answer to Question #294427 in Calculus for Lucky

Question #294427

What is the Laplace transform of t^3 + cos3t-e^-3t?

1
Expert's answer
2022-02-07T16:05:39-0500

We have "F_{(t)}= {t^3 + \\cos{(3t)}-e^{-3t}}"


We proceed to use the rules for Laplace transform and we proceed with each one of the terms:


"\\mathscr{L}[F_{(t)}]_{(s)}=\\mathscr{L}[{t^3 + \\cos{(3t)}-e^{-3t}}]_{(s)}\n\\\\ \\mathscr{L}[F_{(t)}]_{(s)}=\\mathscr{L}[{t^3}]_{(s)}+\\mathscr{s}[{\\cos{(3t)}}]_{(s)}-\\mathscr{L}[{e^{-3t}}]_{(s)}\n\\\\ \\mathscr{L}[F_{(t)}]_{(s)}=\\dfrac{3!}{s^{3+1}}+\\dfrac{s}{s^2+3^2}-\\dfrac{1}{s-{(-3)}}\n\\\\ \\therefore \\mathscr{L}[F_{(t)}]_{(s)}=\\dfrac{6}{s^{4}}+\\dfrac{s}{s^2+9}-\\dfrac{1}{s+3}"


In conclusion, the Laplace transform is "\\mathscr{L}[F_{(t)}]_{(s)}=\\dfrac{6}{s^{4}}+\\dfrac{s}{s^2+9}-\\dfrac{1}{s+3}".


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog