Question #294427

What is the Laplace transform of t^3 + cos3t-e^-3t?

1
Expert's answer
2022-02-07T16:05:39-0500

We have F(t)=t3+cos(3t)e3tF_{(t)}= {t^3 + \cos{(3t)}-e^{-3t}}


We proceed to use the rules for Laplace transform and we proceed with each one of the terms:


L[F(t)](s)=L[t3+cos(3t)e3t](s)L[F(t)](s)=L[t3](s)+s[cos(3t)](s)L[e3t](s)L[F(t)](s)=3!s3+1+ss2+321s(3)L[F(t)](s)=6s4+ss2+91s+3\mathscr{L}[F_{(t)}]_{(s)}=\mathscr{L}[{t^3 + \cos{(3t)}-e^{-3t}}]_{(s)} \\ \mathscr{L}[F_{(t)}]_{(s)}=\mathscr{L}[{t^3}]_{(s)}+\mathscr{s}[{\cos{(3t)}}]_{(s)}-\mathscr{L}[{e^{-3t}}]_{(s)} \\ \mathscr{L}[F_{(t)}]_{(s)}=\dfrac{3!}{s^{3+1}}+\dfrac{s}{s^2+3^2}-\dfrac{1}{s-{(-3)}} \\ \therefore \mathscr{L}[F_{(t)}]_{(s)}=\dfrac{6}{s^{4}}+\dfrac{s}{s^2+9}-\dfrac{1}{s+3}


In conclusion, the Laplace transform is L[F(t)](s)=6s4+ss2+91s+3\mathscr{L}[F_{(t)}]_{(s)}=\dfrac{6}{s^{4}}+\dfrac{s}{s^2+9}-\dfrac{1}{s+3}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS