1200 = 40 ( 1 − 1 ( 1 + x ) 60 ) / x + 1000 ( 1 + x ) 60 1200=40(1- \frac 1 {(1+x)^{60} })/ x+ \frac{1000} {(1+x)^{60}} 1200 = 40 ( 1 − ( 1 + x ) 60 1 ) / x + ( 1 + x ) 60 1000
1200 = 40 − 40 x ( 1 + x ) 60 + 1000 ( 1 + x ) 60 1200=40- \frac {40} {x(1+x)^{60} }+ \frac{1000} {(1+x)^{60}} 1200 = 40 − x ( 1 + x ) 60 40 + ( 1 + x ) 60 1000
1200 − 40 = 1000 ( 1 + x ) 60 − 40 x ( 1 + x ) 60 1200-40 =\frac{1000} {(1+x)^{60}} -\frac {40} {x(1+x)^{60} } 1200 − 40 = ( 1 + x ) 60 1000 − x ( 1 + x ) 60 40
1160 = 1000 ( 1 + x ) 60 − 40 x ( 1 + x ) 60 1160 =\frac{1000} {(1+x)^{60}} -\frac {40} {x(1+x)^{60} } 1160 = ( 1 + x ) 60 1000 − x ( 1 + x ) 60 40
1160 = 1000 ( 1 + x ) 60 − 40 x ( 1 + x ) 60 1160 =\frac{1000} {(1+x)^{60}} -\frac {40} {x(1+x)^{60} } 1160 = ( 1 + x ) 60 1000 − x ( 1 + x ) 60 40
x ( 1 + x ) 60 = 1000 x 1160 − 40 1160 x(1+x)^{60}=\frac{1000 x} {1160} -\frac {40} {1160 } x ( 1 + x ) 60 = 1160 1000 x − 1160 40
x ( 1 + x ) 60 = 25 x 29 − 1 29 x(1+x)^{60}=\frac{25 x} {29} -\frac {1} {29 } x ( 1 + x ) 60 = 29 25 x − 29 1
29 x ( 1 + x ) 60 = 25 x − 1 29x(1+x)^{60}=25x-1 29 x ( 1 + x ) 60 = 25 x − 1 ..............(1)
By using Binomial theorem, we can write ( 1 + x ) 60 (1+x)^{60} ( 1 + x ) 60
( 1 + x ) 60 = 1 + 60 x + 60 ( 60 − 1 ) 1 ! x 2 + 60 ( 60 − 1 ) ( 60 − 2 ) 2 ! x 3 + . . . . . . . . . . . . (1+x)^{60}=1 +{60}x+\frac{60(60-1)}{1!} x^2+\frac{60(60-1)(60-2)}{2!} x^3+............ ( 1 + x ) 60 = 1 + 60 x + 1 ! 60 ( 60 − 1 ) x 2 + 2 ! 60 ( 60 − 1 ) ( 60 − 2 ) x 3 + ............
Since we need a particular answer, as progress with above series the higher power if x x x won't be effect on the value
So neglect the high power of x x x , Now we can write the above binomial expression
( 1 + x ) 60 = 1 + 60 x (1+x)^{60}=1 +{60}x ( 1 + x ) 60 = 1 + 60 x
Now we can write the equation (1) is
29 x ( 1 + 60 x ) = 25 x − 1 29x(1+60x)=25x-1 29 x ( 1 + 60 x ) = 25 x − 1
29 x + 1740 x 2 = 25 x − 1 29x+1740x^2 = 25x-1 29 x + 1740 x 2 = 25 x − 1
1740 x 2 + 29 x − 25 x + 1 = 0 1740x^2 +29x-25x+1=0 1740 x 2 + 29 x − 25 x + 1 = 0
1740 x 2 + 4 x + 1 = 0 1740x^2+4x+1=0 1740 x 2 + 4 x + 1 = 0
by using above quadratic formula
x = − 4 ± 4 2 − 4 ∗ 1740 ∗ 1 2 ∗ 1740 x=\frac{-4±\sqrt{4^2-4*1740*1}}{2*1740} x = 2 ∗ 1740 − 4 ± 4 2 − 4 ∗ 1740 ∗ 1
x = − 4 ± 16 − 6960 3480 x=\frac{-4±\sqrt{16-6960}}{3480} x = 3480 − 4 ± 16 − 6960
x = − 4 ± − 6944 3480 = − 4 ± 83.3306 i 3480 x=\frac{-4±\sqrt{-6944}}{3480}
= \frac{-4±{83.3306i}}{3480} x = 3480 − 4 ± − 6944 = 3480 − 4 ± 83.3306 i
x = − 0.001147 ± . 02 i \boxed {x=-0.001147±.02i} x = − 0.001147 ± .02 i Answer
if we want only positive value, Neglect the negative part...
x = − 0.001147 + 02 i \boxed {x=-0.001147+02i} x = − 0.001147 + 02 i Answer
or
if we want only real value then neglect the imaginary part
x = − . 001147 \boxed {x=-.001147} x = − .001147 Answer
Comments