Answer to Question #294196 in Calculus for law

Question #294196

1200=40((1-(1/(1+x)^60)/x))+((1000/(1+x)^60))


find x.


1
Expert's answer
2022-02-08T16:37:07-0500

"1200=40(1- \\frac 1 {(1+x)^{60} })\/ x+ \\frac{1000} {(1+x)^{60}}"

"1200=40- \\frac {40} {x(1+x)^{60} }+ \\frac{1000} {(1+x)^{60}}"

"1200-40 =\\frac{1000} {(1+x)^{60}} -\\frac {40} {x(1+x)^{60} }"

"1160 =\\frac{1000} {(1+x)^{60}} -\\frac {40} {x(1+x)^{60} }"

"1160 =\\frac{1000} {(1+x)^{60}} -\\frac {40} {x(1+x)^{60} }"

"x(1+x)^{60}=\\frac{1000 x} {1160} -\\frac {40} {1160 }"

"x(1+x)^{60}=\\frac{25 x} {29} -\\frac {1} {29 }"

"29x(1+x)^{60}=25x-1" ..............(1)


By using Binomial theorem, we can write "(1+x)^{60}"

"(1+x)^{60}=1 +{60}x+\\frac{60(60-1)}{1!} x^2+\\frac{60(60-1)(60-2)}{2!} x^3+............"

Since we need a particular answer, as progress with above series the higher power if "x" won't be effect on the value

So neglect the high power of "x", Now we can write the above binomial expression

"(1+x)^{60}=1 +{60}x"

Now we can write the equation (1) is

"29x(1+60x)=25x-1"

"29x+1740x^2 = 25x-1"

"1740x^2 +29x-25x+1=0"

"1740x^2+4x+1=0"




by using above quadratic formula


"x=\\frac{-4\u00b1\\sqrt{4^2-4*1740*1}}{2*1740}"


"x=\\frac{-4\u00b1\\sqrt{16-6960}}{3480}"


"x=\\frac{-4\u00b1\\sqrt{-6944}}{3480}\n= \\frac{-4\u00b1{83.3306i}}{3480}"


"\\boxed {x=-0.001147\u00b1.02i}" Answer


if we want only positive value, Neglect the negative part...

"\\boxed {x=-0.001147+02i}" Answer

or

if we want only real value then neglect the imaginary part

"\\boxed {x=-.001147}" Answer



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog