1200=40((1-(1/(1+x)^60)/x))+((1000/(1+x)^60))
find x.
"1200=40(1- \\frac 1 {(1+x)^{60} })\/ x+ \\frac{1000} {(1+x)^{60}}"
"1200=40- \\frac {40} {x(1+x)^{60} }+ \\frac{1000} {(1+x)^{60}}"
"1200-40 =\\frac{1000} {(1+x)^{60}} -\\frac {40} {x(1+x)^{60} }"
"1160 =\\frac{1000} {(1+x)^{60}} -\\frac {40} {x(1+x)^{60} }"
"1160 =\\frac{1000} {(1+x)^{60}} -\\frac {40} {x(1+x)^{60} }"
"x(1+x)^{60}=\\frac{1000 x} {1160} -\\frac {40} {1160 }"
"x(1+x)^{60}=\\frac{25 x} {29} -\\frac {1} {29 }"
"29x(1+x)^{60}=25x-1" ..............(1)
By using Binomial theorem, we can write "(1+x)^{60}"
"(1+x)^{60}=1 +{60}x+\\frac{60(60-1)}{1!} x^2+\\frac{60(60-1)(60-2)}{2!} x^3+............"
Since we need a particular answer, as progress with above series the higher power if "x" won't be effect on the value
So neglect the high power of "x", Now we can write the above binomial expression
"(1+x)^{60}=1 +{60}x"
Now we can write the equation (1) is
"29x(1+60x)=25x-1"
"29x+1740x^2 = 25x-1"
"1740x^2 +29x-25x+1=0"
"1740x^2+4x+1=0"
by using above quadratic formula
"x=\\frac{-4\u00b1\\sqrt{4^2-4*1740*1}}{2*1740}"
"x=\\frac{-4\u00b1\\sqrt{16-6960}}{3480}"
"x=\\frac{-4\u00b1\\sqrt{-6944}}{3480}\n= \\frac{-4\u00b1{83.3306i}}{3480}"
"\\boxed {x=-0.001147\u00b1.02i}" Answer
if we want only positive value, Neglect the negative part...
"\\boxed {x=-0.001147+02i}" Answer
or
if we want only real value then neglect the imaginary part
"\\boxed {x=-.001147}" Answer
Comments
Leave a comment