1200=40(1−(1+x)601)/x+(1+x)601000
1200=40−x(1+x)6040+(1+x)601000
1200−40=(1+x)601000−x(1+x)6040
1160=(1+x)601000−x(1+x)6040
1160=(1+x)601000−x(1+x)6040
x(1+x)60=11601000x−116040
x(1+x)60=2925x−291
29x(1+x)60=25x−1 ..............(1)
By using Binomial theorem, we can write (1+x)60
(1+x)60=1+60x+1!60(60−1)x2+2!60(60−1)(60−2)x3+............
Since we need a particular answer, as progress with above series the higher power if x won't be effect on the value
So neglect the high power of x, Now we can write the above binomial expression
(1+x)60=1+60x
Now we can write the equation (1) is
29x(1+60x)=25x−1
29x+1740x2=25x−1
1740x2+29x−25x+1=0
1740x2+4x+1=0
by using above quadratic formula
x=2∗1740−4±42−4∗1740∗1
x=3480−4±16−6960
x=3480−4±−6944=3480−4±83.3306i
x=−0.001147±.02i Answer
if we want only positive value, Neglect the negative part...
x=−0.001147+02i Answer
or
if we want only real value then neglect the imaginary part
x=−.001147 Answer
Comments