Let f(x)=log(1+x) in [0, x]
Since f(x) satisfies the condition of L.M.V. theorem in [0, x] , there exists θ(0<θ<1) such that
x−0f(x)−f(0)=f′(θx)⇒xlog(1+x)=1+θx1
Now, 0<θ<1,x>0⇒θx<x
⇒1+θx<1+x ⇒1+θx1>1+x1⇒1+θxx>1+xx ...(i)
Again 0<θ<1,x>0
⇒⇒⇒⇒θx>01+θx>11+θx1<11+θxx<x ...(ii)
From (i) and (ii), we get,
1+xx<log(1+x)<x
Comments