Using LMV, prove that log(1+x) > 2x/(1+x) , if x>0
Let "f(x)=\\log (1+x)" in [0, x]
Since f(x) satisfies the condition of L.M.V. theorem in [0, x] , there exists "\\theta(0<\\theta<1)" such that
"\\begin{aligned}\n\n&\\frac{f(x)-f(0)}{x-0}=f^{\\prime}(\\theta x) \\\\\n\n&\\Rightarrow \\quad \\frac{\\log (1+x)}{x}=\\frac{1}{1+\\theta x}\n\n\\end{aligned}"
Now, "\\quad 0<\\theta<1, x>0 \\Rightarrow \\theta x<x"
"\\Rightarrow \\quad 1+\\theta x<1+x \n\\ \\Rightarrow \\quad \\frac{1}{1+\\theta x}>\\frac{1}{1+x} \n\\\\\\Rightarrow \\quad \\frac{x}{1+\\theta x}>\\frac{x}{1+x} \\ ...(i)"
Again "0<\\theta<1, x>0"
"\\begin{array}{ll}\n\n\\Rightarrow & \\theta x>0 \\\\\n\n\\Rightarrow & 1+\\theta x>1 \\\\\n\n\\Rightarrow & \\frac{1}{1+\\theta x}<1 \\\\\n\n\\Rightarrow & \\frac{x}{1+\\theta x}<x\\ ...(ii)\n\n\\end{array}"
From (i) and (ii), we get,
"\\frac{x}{1+x}<\\log (1+x)<x"
Comments
Leave a comment