Question #293859

Using LMV, prove that log(1+x) > 2x/(1+x) , if x>0


1
Expert's answer
2022-02-07T10:48:46-0500

Solution:

Let f(x)=log(1+x)f(x)=\log (1+x)  in [0, x]

Since f(x) satisfies the condition of L.M.V. theorem in [0, x] , there exists θ(0<θ<1)\theta(0<\theta<1)  such that

f(x)f(0)x0=f(θx)log(1+x)x=11+θx\begin{aligned} &\frac{f(x)-f(0)}{x-0}=f^{\prime}(\theta x) \\ &\Rightarrow \quad \frac{\log (1+x)}{x}=\frac{1}{1+\theta x} \end{aligned}

Now, 0<θ<1,x>0θx<x\quad 0<\theta<1, x>0 \Rightarrow \theta x<x

 1+θx<1+x 11+θx>11+xx1+θx>x1+x ...(i)\Rightarrow \quad 1+\theta x<1+x \ \Rightarrow \quad \frac{1}{1+\theta x}>\frac{1}{1+x} \\\Rightarrow \quad \frac{x}{1+\theta x}>\frac{x}{1+x} \ ...(i)

Again 0<θ<1,x>00<\theta<1, x>0

θx>01+θx>111+θx<1x1+θx<x ...(ii)\begin{array}{ll} \Rightarrow & \theta x>0 \\ \Rightarrow & 1+\theta x>1 \\ \Rightarrow & \frac{1}{1+\theta x}<1 \\ \Rightarrow & \frac{x}{1+\theta x}<x\ ...(ii) \end{array}

From (i) and (ii), we get,

x1+x<log(1+x)<x\frac{x}{1+x}<\log (1+x)<x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS