Question #293212

Let𝛼(π‘₯)=π‘₯ and define𝑓 as𝑓(π‘₯)=1 ifπ‘₯ is rational and𝑓(π‘₯)=0 ifπ‘₯ is irrational. Find 𝐼(𝑓, 𝛼) and 𝐼(𝑓, 𝛼). 


1
Expert's answer
2022-02-03T16:09:04-0500

By definition;

Ξ±(x)=x and f:[a,b]β†’R is defined as f(x)={1if x is rational0if x is irrational\displaystyle \alpha(x)=x \text{ and }\\ f:[a,b]\rightarrow\R \text{ is defined as } f(x)=\begin{cases}1&\text{if }x\text{ is rational}\\0&\text{if }x\text{ is irrational}\end{cases}

Now, for every partition P of [a,b],\displaystyle [a,b],

Mk(f)=sup⁑{f(x):x∈[xkβˆ’1,xk]}=1mk(f)=inf⁑{f(x):x∈[xkβˆ’1,xk]}=0\displaystyle M_k(f) = \sup \{f(x) : x \in [x_{k-1}, x_k]\}=1\\ m_k(f) = \inf \{f(x) : x\in[x_{k-1}, x_k]\}=0, since every subinterval contains both rational and irrational numbers.


Thus,

U(P,f,a)=βˆ‘k=1nMk(f)Δαk=1and\displaystyle U(P, f, a) =\sum^n_{k=1} M_k(f) \Delta \alpha_k=1\\\text{and}

L(P,f,Ξ±)=βˆ‘k=1nmk(f)Δαk=0  βˆ€ partition P.Where Ξ”Ξ±k=Δα(xk)=Ξ±kβˆ’Ξ±kβˆ’1.\displaystyle L(P, f, \alpha) =\sum^n_{k=1} m_k(f) \Delta \alpha_k=0\ \ \forall\ \text{partition }P.\\ \text{Where }\Delta\alpha_k=\Delta\alpha(x_{k})=\alpha_k-\alpha_{k-1}.


Hence, it follows that we have;

Iβ€Ύ(f,Ξ±)=βˆ«β€Ύabf dx=0Iβ€Ύ(f,Ξ±)=βˆ«β€Ύabf dx=1\displaystyle \underline{I}(f,\alpha)=\underline{\int}^b_af\ dx=0\\ \quad\\ \overline{I}(f,\alpha)=\overline{\int}^b_af\ dx=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS