Answer to Question #292861 in Calculus for jaya

Question #292861

15. Let





f(x,y) { 0, x² < y < 2x² 1. otherwise





Verify the existence of partial derivatives fr(0,0) and f(0, 0), and the differentiability of fat (0,0).

1
Expert's answer
2022-02-02T15:17:26-0500

From the given definition, we have that;

f(x,y)={0if x²<y<2x²1if otherwise\displaystyle f(x,y)=\begin{cases} 0 &\text{if } x²<y<2x²\\ 1&\text{if otherwise} \end{cases}

That is,

f(x,y)={0if y(x2,2x2)1if y(,x2][2x2,)\displaystyle f(x,y)=\begin{cases} 0 &\text{if } y\in(x^2,2x^2)\\ 1&\text{if }y\in(-\infty,x^2]\cup[2x^2,\infty) \end{cases}

Now, f(0,0)=1 since 0(,x2][2x2,)\displaystyle f(0,0)=1 \text{ since }0\in(-\infty,x^2]\cup[2x^2,\infty)


Thus,


1] fx(0,0)=limh0f(h,0)f(0,0)h=limh0f(h,0)1h\displaystyle f_x(0,0)=\lim_{h\rightarrow0}\frac{f(h,0)-f(0,0)}{h}=\lim_{h\rightarrow0}\frac{f(h,0)-1}{h}

But,limh0f(h,0)1h exists iff limh0f(h,0)1h and limh0+f(h,0)1h exists and areequal. \displaystyle \,\lim_{h\rightarrow0}\frac{f(h,0)-1}{h}\text{ exists iff }\lim_{h\rightarrow0^-}\frac{f(h,0)-1}{h}\text{ and }\lim_{h\rightarrow0^+}\frac{f(h,0)-1}{h}\text{ exists and are}\\ \text{equal. }

Now, limh0f(h,0)1h=limh011h=0,since f(h,0)1 as h0 because\displaystyle \lim_{h\rightarrow0^-}\frac{f(h,0)-1}{h}=\lim_{h\rightarrow0^-}\frac{1-1}{h}=0, \text{since }f(h,0) \rightarrow1\text{ as }h\rightarrow0^- \text{ because}\\

0(,h2][2h2,)\displaystyle 0\in(-\infty,h^2]\cup[2h^2,\infty)

Also, limh0+f(h,0)1h=limh0+11h=0,since f(h,0)1 as h0+ because\displaystyle \lim_{h\rightarrow0^+}\frac{f(h,0)-1}{h}=\lim_{h\rightarrow0^+}\frac{1-1}{h}=0, \text{since }f(h,0) \rightarrow1\text{ as }h\rightarrow0^+ \text{ because}\\

0(,h2][2h2,)\displaystyle 0\in(-\infty,h^2]\cup[2h^2,\infty)

Since both left and right limit exists, we have;

fx(0,0)=limh0f(h,0)f(0,0)h=limh0f(h,0)1h=0\displaystyle f_x(0,0)=\lim_{h\rightarrow0}\frac{f(h,0)-f(0,0)}{h}=\lim_{h\rightarrow0}\frac{f(h,0)-1}{h}=0


2] fy(0,0)=limh0f(0,h)f(0,0)h=limh0f(0,h)1h\displaystyle f_y(0,0)=\lim_{h\rightarrow0}\frac{f(0,h)-f(0,0)}{h}=\lim_{h\rightarrow0}\frac{f(0,h)-1}{h}

But,

limh0f(0,h)1h exists iff limh0f(0,h)1h and limh0+f(0,h)1h exists and areequal. \displaystyle \,\lim_{h\rightarrow0}\frac{f(0,h)-1}{h}\text{ exists iff }\lim_{h\rightarrow0^-}\frac{f(0,h)-1}{h}\text{ and }\lim_{h\rightarrow0^+}\frac{f(0,h)-1}{h}\text{ exists and are}\\ \text{equal. }

Now, limh0f(0,h)1h=limh011h=0,since f(0,h)1 as h0 because\displaystyle \lim_{h\rightarrow0^-}\frac{f(0,h)-1}{h}=\lim_{h\rightarrow0^-}\frac{1-1}{h}=0, \text{since }f(0,h) \rightarrow1\text{ as }h\rightarrow0^- \text{ because}\\

h(,0][0,)\displaystyle h\in(-\infty,0]\cup[0,\infty)

Also, limh0+f(0,h)1h=limh0+11h=0,since f(0,h)1 as h0+ because\displaystyle \lim_{h\rightarrow0^+}\frac{f(0,h)-1}{h}=\lim_{h\rightarrow0^+}\frac{1-1}{h}=0, \text{since }f(0,h) \rightarrow1\text{ as }h\rightarrow0^+ \text{ because}\\

h(,0][0)\displaystyle h\in(-\infty,0]\cup[0\infty)

Since both left and right limit exists, we have;

fy(0,0)=limh0f(0,h)f(0,0)h=limh0f(0,h)1h=0\displaystyle f_y(0,0)=\lim_{h\rightarrow0}\frac{f(0,h)-f(0,0)}{h}=\lim_{h\rightarrow0}\frac{f(0,h)-1}{h}=0.


3] We need to check the continuity of the function at (0,0).\displaystyle (0,0). That is, we need to show that lim(x,y)(0,0)f(x,y)=f(0,0)\displaystyle \lim_{(x,y)\rightarrow(0,0)}f(x,y)=f(0,0).

first off, recall that f(0,0)=1\displaystyle f(0,0)=1.

Now, to evaluate lim(x,y)(0,0)f(x,y)\displaystyle \lim_{(x,y)\rightarrow(0,0)}f(x,y), consider the limit along the power curve x=t\displaystyle x=t,

y=at2\displaystyle y=at^2 as t0+\displaystyle t\rightarrow 0^+.

Then,

lim(x,y)(0,0)f(x,y)=limt0+f(t,at2)={0if a(1,2)1if a(,1][2,)\displaystyle \lim_{(x,y)\rightarrow(0,0)}f(x,y)=\lim_{t\rightarrow 0^+}f(t,at^2)=\begin{cases}0 &\text{if }a\in(1,2)\\1&\text{if }a\in(-\infty,1]\cup[2,\infty)\end{cases}


Since lim(x,y)(0,0)f(x,y)=limt0+f(t,at2)={0if a(1,2)1if a(,1][2,)\lim_{(x,y)\rightarrow(0,0)}f(x,y)=\lim_{t\rightarrow 0^+}f(t,at^2)=\begin{cases}0 &\text{if }a\in(1,2)\\1&\text{if }a\in(-\infty,1]\cup[2,\infty)\end{cases}

depends on a, thus we have that lim(x,y)(0,0)f(x,y)\displaystyle \lim_{(x,y)\rightarrow(0,0)}f(x,y) does not exist.

f(x,y)\Rightarrow f(x,y) is not continuous at (0,0).\displaystyle (0,0).

f(x,y)\Rightarrow f(x,y) is not differentiable at (0,0).\displaystyle (0,0).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment