15. Let
f(x,y) { 0, x² < y < 2x² 1. otherwise
Verify the existence of partial derivatives fr(0,0) and f(0, 0), and the differentiability of fat (0,0).
From the given definition, we have that;
"\\displaystyle\nf(x,y)=\\begin{cases}\n0 &\\text{if } x\u00b2<y<2x\u00b2\\\\\n1&\\text{if otherwise}\n\\end{cases}"
That is,
"\\displaystyle\nf(x,y)=\\begin{cases}\n0 &\\text{if } y\\in(x^2,2x^2)\\\\\n1&\\text{if }y\\in(-\\infty,x^2]\\cup[2x^2,\\infty)\n\\end{cases}"
Now, "\\displaystyle\nf(0,0)=1 \\text{ since }0\\in(-\\infty,x^2]\\cup[2x^2,\\infty)"
Thus,
1] "\\displaystyle\nf_x(0,0)=\\lim_{h\\rightarrow0}\\frac{f(h,0)-f(0,0)}{h}=\\lim_{h\\rightarrow0}\\frac{f(h,0)-1}{h}"
But,"\\displaystyle\n\\,\\lim_{h\\rightarrow0}\\frac{f(h,0)-1}{h}\\text{ exists iff }\\lim_{h\\rightarrow0^-}\\frac{f(h,0)-1}{h}\\text{ and }\\lim_{h\\rightarrow0^+}\\frac{f(h,0)-1}{h}\\text{ exists and are}\\\\\n\\text{equal. }"
Now, "\\displaystyle\n\\lim_{h\\rightarrow0^-}\\frac{f(h,0)-1}{h}=\\lim_{h\\rightarrow0^-}\\frac{1-1}{h}=0, \\text{since }f(h,0) \\rightarrow1\\text{ as }h\\rightarrow0^- \\text{ because}\\\\"
"\\displaystyle\n0\\in(-\\infty,h^2]\\cup[2h^2,\\infty)"
Also, "\\displaystyle\n\\lim_{h\\rightarrow0^+}\\frac{f(h,0)-1}{h}=\\lim_{h\\rightarrow0^+}\\frac{1-1}{h}=0, \\text{since }f(h,0) \\rightarrow1\\text{ as }h\\rightarrow0^+ \\text{ because}\\\\"
"\\displaystyle\n0\\in(-\\infty,h^2]\\cup[2h^2,\\infty)"
Since both left and right limit exists, we have;
"\\displaystyle\nf_x(0,0)=\\lim_{h\\rightarrow0}\\frac{f(h,0)-f(0,0)}{h}=\\lim_{h\\rightarrow0}\\frac{f(h,0)-1}{h}=0"
2] "\\displaystyle\nf_y(0,0)=\\lim_{h\\rightarrow0}\\frac{f(0,h)-f(0,0)}{h}=\\lim_{h\\rightarrow0}\\frac{f(0,h)-1}{h}"
But,
"\\displaystyle\n\\,\\lim_{h\\rightarrow0}\\frac{f(0,h)-1}{h}\\text{ exists iff }\\lim_{h\\rightarrow0^-}\\frac{f(0,h)-1}{h}\\text{ and }\\lim_{h\\rightarrow0^+}\\frac{f(0,h)-1}{h}\\text{ exists and are}\\\\\n\\text{equal. }"
Now, "\\displaystyle\n\\lim_{h\\rightarrow0^-}\\frac{f(0,h)-1}{h}=\\lim_{h\\rightarrow0^-}\\frac{1-1}{h}=0, \\text{since }f(0,h) \\rightarrow1\\text{ as }h\\rightarrow0^- \\text{ because}\\\\"
"\\displaystyle\nh\\in(-\\infty,0]\\cup[0,\\infty)"
Also, "\\displaystyle\n\\lim_{h\\rightarrow0^+}\\frac{f(0,h)-1}{h}=\\lim_{h\\rightarrow0^+}\\frac{1-1}{h}=0, \\text{since }f(0,h) \\rightarrow1\\text{ as }h\\rightarrow0^+ \\text{ because}\\\\"
"\\displaystyle\nh\\in(-\\infty,0]\\cup[0\\infty)"
Since both left and right limit exists, we have;
"\\displaystyle\nf_y(0,0)=\\lim_{h\\rightarrow0}\\frac{f(0,h)-f(0,0)}{h}=\\lim_{h\\rightarrow0}\\frac{f(0,h)-1}{h}=0".
3] We need to check the continuity of the function at "\\displaystyle\n(0,0)." That is, we need to show that "\\displaystyle\n\\lim_{(x,y)\\rightarrow(0,0)}f(x,y)=f(0,0)".
first off, recall that "\\displaystyle\nf(0,0)=1".
Now, to evaluate "\\displaystyle\n\\lim_{(x,y)\\rightarrow(0,0)}f(x,y)", consider the limit along the power curve "\\displaystyle\nx=t",
"\\displaystyle\ny=at^2" as "\\displaystyle\nt\\rightarrow 0^+".
Then,
"\\displaystyle\n\\lim_{(x,y)\\rightarrow(0,0)}f(x,y)=\\lim_{t\\rightarrow 0^+}f(t,at^2)=\\begin{cases}0 &\\text{if }a\\in(1,2)\\\\1&\\text{if }a\\in(-\\infty,1]\\cup[2,\\infty)\\end{cases}"
Since "\\lim_{(x,y)\\rightarrow(0,0)}f(x,y)=\\lim_{t\\rightarrow 0^+}f(t,at^2)=\\begin{cases}0 &\\text{if }a\\in(1,2)\\\\1&\\text{if }a\\in(-\\infty,1]\\cup[2,\\infty)\\end{cases}"
depends on a, thus we have that "\\displaystyle\n\\lim_{(x,y)\\rightarrow(0,0)}f(x,y)" does not exist.
"\\Rightarrow f(x,y)" is not continuous at "\\displaystyle\n(0,0)."
"\\Rightarrow f(x,y)" is not differentiable at "\\displaystyle\n(0,0)."
Comments
Leave a comment