The voltage V(in volts) that results if an alternating current I (in amps) flows through a resistor R is given thus: V = F(T) = IRsinωt. What is the maxima of the function?
Given, "V = F(t) = IR\\sin\u03c9t"
"V'= \u03c9IR\\cos\u03c9t\n\\\\ V''=-\u03c9^2IR\\sin\u03c9t"
Put V'=0
"\\Rightarrow \u03c9IR\\cos\u03c9t=0\n\\\\ \\Rightarrow \\cos\u03c9t=0\n\\\\ \\Rightarrow \u03c9t=\\frac{\\pi }{2},\\:\u03c9t=\\frac{3\\pi }{2}; 0\\le \u03c9t\\le 2\\pi\n\\\\ \\Rightarrow t=\\frac{\\pi }{2\u03c9},\\:\u03c9t=\\frac{3\\pi }{2w}"
Put these values of t in V' '.
"V''=-\u03c9^2IR\\sin(\u03c9\\frac{\\pi }{2\u03c9})=-\u03c9^2IR<0"
So, maxima exists.
Now, put "t=\\frac{\\pi }{2\u03c9}" in V.
"V= IR\\sin(\u03c9.\\frac{\\pi }{2\u03c9})\n\\\\ \\Rightarrow V=IR(1)\n\\\\\\Rightarrow V=IR"
This is maxima.
Comments
Leave a comment