What is the value of the input Variable at which the maxima of function V = f(t) = IRsinωt occurs
Let us find the value of the input variable at which the maximum of function "V = f(t) = IR\\sin\u03c9t" occurs. It follows that "f'(t) = \u03c9IR\\cos\u03c9t=0" implies "\u03c9t=\\frac{\\pi }2+\\pi n", and thus "t=\\frac{\\pi }{2\u03c9}+\\frac{\\pi n}{\\omega}." Since
"f''(t) = -\u03c9^2IR\\sin \u03c9t" and "f''(\\frac{\\pi }{2\u03c9}+\\frac{\\pi n}{\\omega}) = -\u03c9^2IR\\sin \u03c9(\\frac{\\pi }{2\u03c9}+\\frac{\\pi n}{\\omega})\n= -\u03c9^2IR\\sin (\\frac{\\pi }{2}+\\pi n),"
we conclude that "f''(\\frac{\\pi }{2\u03c9}+\\frac{2\\pi k}{\\omega}) =\n= -\u03c9^2IR\\sin (\\frac{\\pi }{2}+2\\pi k)\n= -\u03c9^2IR\\sin (\\frac{\\pi }{2})= -\u03c9^2IR<0"
and "f''(\\frac{\\pi }{2\u03c9}+\\frac{\\pi (2k+1)}{\\omega}) =\n= -\u03c9^2IR\\sin (\\frac{\\pi }{2}+\\pi (2k+1))\n= \u03c9^2IR\\sin (\\frac{\\pi }{2})= \u03c9^2IR>0." Therefore, the points "t_k=\\frac{\\pi }{2\u03c9}+\\frac{2\\pi k}{\\omega}," where "k\\in \\N," is the values of the input variable at which the maximum of function "V = f(t) = IR\\sin\u03c9t" occurs.
Comments
Leave a comment