Question #292732

Calculate the approximate value of 10 to four decimal places by taking the first four


terms of an appropriate Taylor’s series.

1
Expert's answer
2022-02-17T13:04:26-0500

Taylor series is given as

f(a+h)=f(a)+h.f(a)+h22!f(a)+h33!f(a)+...f(a+h)=f(a)+h.f'(a)+{h^2\over 2!}f''(a)+{h^3\over 3!}f'''(a)+...

Let's Rewrite 2626 in the following form:

26=25+126=25+1 Since we know square root of 2525

Now, let's have a function that will enable us use Taylor series method

f(26)=f(25+1)f(26)=f(25+1)

    \implies a=25a=25 and h=1h=1

Since we are asked to find the square root

    f(a)=a12    f(a+1)=26\implies f(a)=a^{1\over 2} \implies f(a+1)=\sqrt {26}

Substituting the value of aa we have

f(a)=2512=5f(a)=25^{1\over 2} =5

f(a)=12a121=12a12=12a12=12a12f'(a)={1\over 2}a^{{1\over 2}-1}={1\over 2}a^{-{1\over 2}}={{1\over 2}\over a^{1\over2}}={1\over 2a^{1\over 2}}

Substituting the value of aa we have

f(a)=12(25)12=0.1f'(a)={1\over 2(25)^{1\over 2}}=0.1

f(a)=(12)(12)a121=14a32=14a32=14a32f''(a)=(-{1\over 2})({1\over 2})a^{-{1\over 2}-1}=-{1\over 4}a^{-{3\over 2}}={-{1\over 4}\over a^{3\over 2}}=-{1\over 4a^{3\over 2}}

Substituting the value of aa we have

f(a)=14(25)32=0.002f''(a)=-{1\over 4(25)^{3\over 2}}=-0.002

f(a)=(32)(14)a321=38a52=38a52=38a52f'''(a)=({-{3\over 2}})({-{1\over 4}})a^{-{3\over 2}-1}={3\over 8}a^{-{5\over 2}}={{3\over 8}\over a^{5\over 2}}={3\over 8a^{5\over 2}}

Substituting the value of aa we have

f(a)=38(25)52=0.00012f'''(a)={3\over 8(25)^{5\over 2}}=0.00012

From Taylor series method, we have

26=f(a+1)=f(a)+1.f(a)+122!f(a)+133!f(a)+...\sqrt {26}=f(a+1)=f(a)+1.f'(a)+{1^2\over 2!}f''(a)+{1^3\over 3!}f'''(a)+...

    26=f(a+1)=f(a)+f(a)+f(a)2+f(a)3!+...\implies \sqrt {26}= f(a+1)=f(a)+f'(a)+{f''(a)\over 2}+{f'''(a)\over 3!}+...

But

f(a)=5f(a)=5 , f(a)=0.1f'(a)=0.1 , f(a)=0.002f''(a)=-0.002 , f(a)=0.00012f'''(a)=0.00012

    26=f(a+1)=5+0.1+(0.002)2+0.000123!=5.09902\implies \sqrt {26}= f(a+1)=5+0.1+{(-0.002)\over 2}+{0.00012\over 3!}=5.09902

\therefore 26=5.0990\sqrt{26}=5.0990 correct to four decimal places


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS