Calculate the approximate value of 10 to four decimal places by taking the first four
terms of an appropriate Taylor’s series.
Taylor series is given as
"f(a+h)=f(a)+h.f'(a)+{h^2\\over 2!}f''(a)+{h^3\\over 3!}f'''(a)+..."
Let's Rewrite "26" in the following form:
"26=25+1" Since we know square root of "25"
Now, let's have a function that will enable us use Taylor series method
"f(26)=f(25+1)"
"\\implies" "a=25" and "h=1"
Since we are asked to find the square root
"\\implies f(a)=a^{1\\over 2} \\implies f(a+1)=\\sqrt {26}"
Substituting the value of "a" we have
"f(a)=25^{1\\over 2} =5"
"f'(a)={1\\over 2}a^{{1\\over 2}-1}={1\\over 2}a^{-{1\\over 2}}={{1\\over 2}\\over a^{1\\over2}}={1\\over 2a^{1\\over 2}}"
Substituting the value of "a" we have
"f'(a)={1\\over 2(25)^{1\\over 2}}=0.1"
"f''(a)=(-{1\\over 2})({1\\over 2})a^{-{1\\over 2}-1}=-{1\\over 4}a^{-{3\\over 2}}={-{1\\over 4}\\over a^{3\\over 2}}=-{1\\over 4a^{3\\over 2}}"
Substituting the value of "a" we have
"f''(a)=-{1\\over 4(25)^{3\\over 2}}=-0.002"
"f'''(a)=({-{3\\over 2}})({-{1\\over 4}})a^{-{3\\over 2}-1}={3\\over 8}a^{-{5\\over 2}}={{3\\over 8}\\over a^{5\\over 2}}={3\\over 8a^{5\\over 2}}"
Substituting the value of "a" we have
"f'''(a)={3\\over 8(25)^{5\\over 2}}=0.00012"
From Taylor series method, we have
"\\sqrt {26}=f(a+1)=f(a)+1.f'(a)+{1^2\\over 2!}f''(a)+{1^3\\over 3!}f'''(a)+..."
"\\implies \\sqrt {26}= f(a+1)=f(a)+f'(a)+{f''(a)\\over 2}+{f'''(a)\\over 3!}+..."
But
"f(a)=5" , "f'(a)=0.1" , "f''(a)=-0.002" , "f'''(a)=0.00012"
"\\implies \\sqrt {26}= f(a+1)=5+0.1+{(-0.002)\\over 2}+{0.00012\\over 3!}=5.09902"
"\\therefore" "\\sqrt{26}=5.0990" correct to four decimal places
Comments
Leave a comment