Taylor series is given as
f(a+h)=f(a)+h.f′(a)+2!h2f′′(a)+3!h3f′′′(a)+...
Let's Rewrite 26 in the following form:
26=25+1 Since we know square root of 25
Now, let's have a function that will enable us use Taylor series method
f(26)=f(25+1)
⟹ a=25 and h=1
Since we are asked to find the square root
⟹f(a)=a21⟹f(a+1)=26
Substituting the value of a we have
f(a)=2521=5
f′(a)=21a21−1=21a−21=a2121=2a211
Substituting the value of a we have
f′(a)=2(25)211=0.1
f′′(a)=(−21)(21)a−21−1=−41a−23=a23−41=−4a231
Substituting the value of a we have
f′′(a)=−4(25)231=−0.002
f′′′(a)=(−23)(−41)a−23−1=83a−25=a2583=8a253
Substituting the value of a we have
f′′′(a)=8(25)253=0.00012
From Taylor series method, we have
26=f(a+1)=f(a)+1.f′(a)+2!12f′′(a)+3!13f′′′(a)+...
⟹26=f(a+1)=f(a)+f′(a)+2f′′(a)+3!f′′′(a)+...
But
f(a)=5 , f′(a)=0.1 , f′′(a)=−0.002 , f′′′(a)=0.00012
⟹26=f(a+1)=5+0.1+2(−0.002)+3!0.00012=5.09902
∴ 26=5.0990 correct to four decimal places
Comments