Given fxx=6x,fxy=0,fyy=6y, find the nature of stationary point at (-1,2)
"f_{xx}=A=6x,\n\\\\f_{xy}=B=0,\n\\\\f_{yy}=C=6y"
At (-1,2),
"A=6(-1)=-6\n\\\\B=0\n\\\\C=6(2)=12"
Now, we find "AC-B^2"
"=(-6)(12)-0^2\n\\\\=-72<0"
So, nature of stationary point at (-1,2) is a saddle point, neither maximum nor minimum.
Comments
Leave a comment