How do you obtain a partial differential equation by eliminating arbitrary function from z=f (x+iy) + g (x-iy)?
Given z=f(x+iy)+g(x−iy)z = f(x+iy)+g(x-iy)z=f(x+iy)+g(x−iy)
P=δz/δx=f‘(x+iy)+g‘(x−iy)P=\delta z/\delta x = f`(x+iy)+g`(x-iy)P=δz/δx=f‘(x+iy)+g‘(x−iy)
q=δz/δy=if‘(x+iy)−ig‘(x−iy)q=\delta z/\delta y = i f`(x+iy)-ig`(x-iy)q=δz/δy=if‘(x+iy)−ig‘(x−iy)
r=δ2z/δx2=f‘‘(x+iy)+g‘‘(x−iy)r=\delta^2 z/\delta x^2=f``(x+iy)+g``(x-iy)r=δ2z/δx2=f‘‘(x+iy)+g‘‘(x−iy)
t=δ2z/δy2=−f‘‘(x+iy)−g‘‘(x−iy)t=\delta^2z/\delta y^2 = -f``(x+iy)-g``(x-iy)t=δ2z/δy2=−f‘‘(x+iy)−g‘‘(x−iy)
r + t = 0 is the required p.d.e.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment