Answer to Question #294487 in Calculus for Ianidy

Question #294487

show that the equation of the tangent to x2+xy+y=0 at the point(x1,y1) is

(2x1+y1)x+(x1+1) y+y1 =0


1
Expert's answer
2022-02-08T12:29:07-0500
x2+xy+y=0x^2+xy+y=0

Differentiate both sides with respect to xx


ddx(x2+xy+y)=ddx(0)\dfrac{d}{dx}(x^2+xy+y)=\dfrac{d}{dx}(0)

Use the Chain Rule


2x+y+xdydx+dydx=02x+y+x\dfrac{dy}{dx}+\dfrac{dy}{dx}=0

Solve for dydx\dfrac{dy}{dx}


dydx=2x+yx+1\dfrac{dy}{dx}=-\dfrac{2x+y}{x+1}

At the point (x1,y1)(x_1,y_1)


dydx(x1,y1)=2x1+y1x1+1\dfrac{dy}{dx}|_{(x_1,y_1)}=-\dfrac{2x_1+y_1}{x_1+1}

The equation of the tangent to x2+xy+y=0x^2+xy+y=0 at the point(x1,y1)(x_1,y_1) is


yy1=2x1+y1x1+1(xx1)y-y_1=-\dfrac{2x_1+y_1}{x_1+1}(x-x_1)

(x1+1)y+(2x1+y1)xx1y1y12x12x1y1=0(x_1+1)y+(2x_1+y_1)x-x_1y_1-y_1 -2x_1^2-x_1y_1=0

(x1+1)y+(2x1+y1)x2(x12+x1y1+y1)+y1=0(x_1+1)y+(2x_1+y_1)x-2(x_1^2+x_1y_1+y_1)+y_1=0

Then the equation of the tangent to x2+xy+y=0x^2+xy+y=0 at the point(x1,y1)(x_1,y_1) will be


(x1+1)y+(2x1+y1)x+y1=0(x_1+1)y+(2x_1+y_1)x+y_1=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment