Question #294484

A box with a square base and an open top is to have volume 62.5 m3. Neglect the thickness of the material used to make the box and find the dimension that will minimize the amount of material used.


1
Expert's answer
2022-02-07T16:54:03-0500

Let xx be the length of the sides of the base and hh be the height. Then,

We need to maximize;

SA=area of base+4(area of vertical side)=x2+4xh\displaystyle SA=\text{area of base+4(area of vertical side)}=x^2+4xh

subject to;

V=(area of base)(height)=x2hV=\text{(area of base)(height)}=x^2h

Now, V=(area of base)(height)=x2h62.5=x2hh=62.5x2\displaystyle V=\text{(area of base)(height)}=x^2h\Rightarrow 62.5=x^2h\Rightarrow h=\frac{62.5}{x^2}

SA=x2+4xh=x2+4x(62.5x2)=x2+250x1\displaystyle \Rightarrow SA=x^2+4xh=x^2+4x\left(\frac{62.5}{x^2}\right)=x^2+250x^{-1}

Thus, taking the derivative of SA=x2+250x1\displaystyle SA=x^2+250x^{-1} wrt xx yields;

(SA)=2x250x2(SA)\prime=2x-250x^{-2}

Setting (SA)=0(SA)\prime=0 yields;

2x250x2=0x=5 m2x-250x^{-2}=0\Rightarrow x=5\ m

The second derivative test verifies that SASA has a minimum at x=5 mx=5\ m since:

(SA)=2+500x3=6\displaystyle (SA)\prime\prime=2+500x^{-3}=6 which is positive at x=5 mx=5\ m

Thus, at x=5, SA=52+2505=75x=5,\ SA=5^2+\frac{250}{5}=75


Hence, the minimum surface area;

SA=75 m2SA=75\ m^2, and

the box should have base 5 m5\ m by 5 m5\ m and height 2.5 m2.5\ m.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS