Graph shows that when ω→0+,f(w)=2.312
f(w)=ω20.625[1−sin(2.72ω+2π)]⇒f(w)=ω20.625[1−cos(2.72ω)]⇒limω→0+f(w)=limω→0+ω20.625[1−cos(2.72ω)]=limω→0+0.625(ω21−cos(2.72ω)) [0/0 form]=limω→0+0.625(2ω2.72sin(2.72ω)) [L ′Hopital Rule]
=limω→0+20.625×2.722(2.72ωsin(2.72ω))=20.625×2.722(1)=2.312
Thus, we get same value, i.e., 2.312 from both methods.
Comments