A knuckleball thrown with a different grip than that of the problem above has left/right
position as it crosses the plate given by
f(W) =
(0.625/w2)(1-sin (2.72w+π/2))
Again, use graphical and tabular evidence to make a conjecture about the lim f(w) as w approaches 0 from the right.
Graph shows that when "\\omega\\rightarrow0^+, f(w)=2.312"
"f(w)=\\dfrac{0.625}{\\omega^2}[1-\\sin(2.72\\omega+\\dfrac {\\pi}2)]\n\\\\\\Rightarrow f(w)=\\dfrac{0.625}{\\omega^2}[1-\\cos(2.72\\omega)]\n\\\\\\Rightarrow \\lim_{ \\omega\\rightarrow0^+}f(w)=\\lim_{ \\omega\\rightarrow0^+}\\dfrac{0.625}{\\omega^2}[1-\\cos(2.72\\omega)] \n\\\\ =\\lim_{ \\omega\\rightarrow0^+}0.625(\\dfrac{1-\\cos(2.72\\omega)}{\\omega^2}) \\ \\ \\ [0\/0\\ form]\n\\\\=\\lim_{ \\omega\\rightarrow0^+}0.625(\\dfrac{2.72\\sin(2.72\\omega)}{2\\omega}) \\ \\ [L\\ 'Hopital \\ Rule]"
"\\\\=\\lim_{ \\omega\\rightarrow0^+}\\dfrac{0.625}2\\times2.72^2(\\dfrac{\\sin(2.72\\omega)}{2.72\\omega})\n\\\\=\\dfrac{0.625}2\\times2.72^2(1)\n\\\\=2.312"
Thus, we get same value, i.e., 2.312 from both methods.
Comments
Leave a comment