Answer to Question #284171 in Calculus for Cloudius

Question #284171

(a) Evaluate∫[


𝒙/(𝒙^2+𝟏)^(1/2)𝒅𝒙.


(b) Use MATLAB to generate some typical integral curves of 𝑓(π‘₯) =


𝒙/(𝒙^2+𝟏)^(1/2)𝒅𝒙over the interval (βˆ’5,5).



1
Expert's answer
2022-01-06T11:44:37-0500

Solution:

(a):

"I=\\int \\dfrac{x}{\\sqrt{x^2+1}}dx"

"I=\\int \\dfrac{x}{\\sqrt{x^2+1}}dx"

Put "x^2+1=t"

"\\Rightarrow 2xdx=dt\n\\\\\\Rightarrow xdx=\\dfrac{dt}{2}"

So, "I=\\dfrac{1}{2}\\int \\dfrac{1}{\\sqrt{t}}dt"

"I=\\dfrac{1}{2}\\int \\dfrac{1}{\\sqrt{t}}dt"

"I=\\dfrac{1}{2}\\int t^{-1\/2}dt\n\\\\=\\dfrac{1}{2}.\\dfrac{t^{1\/2}}{1\/2}+c\n\\\\=\\sqrt t+c\n\\\\=\\sqrt{x^2+1}+c"

"I=\\dfrac{1}{2}\\int t^{-1\/2}dt\n\\\\=\\dfrac{1}{2}.\\dfrac{t^{1\/2}}{1\/2}+c\n\\\\=\\sqrt t+c\n\\\\=\\sqrt{x^2+1}+c""I=\\dfrac{1}{2}\\int t^{-1\/2}dt\n\\\\=\\dfrac{1}{2}.\\dfrac{t^{1\/2}}{1\/2}+c\n\\\\=\\sqrt t+c\n\\\\=\\sqrt{x^2+1}+c"

(b):

The graph using matlab from (-5,5) is as follows:


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog