(a) Evaluateβ«[
π/(π^2+π)^(1/2)π π.
(b) Use MATLAB to generate some typical integral curves of π(π₯) =
π/(π^2+π)^(1/2)π πover the interval (β5,5).
(a):
"I=\\int \\dfrac{x}{\\sqrt{x^2+1}}dx"
"I=\\int \\dfrac{x}{\\sqrt{x^2+1}}dx"
Put "x^2+1=t"
"\\Rightarrow 2xdx=dt\n\\\\\\Rightarrow xdx=\\dfrac{dt}{2}"
So, "I=\\dfrac{1}{2}\\int \\dfrac{1}{\\sqrt{t}}dt"
"I=\\dfrac{1}{2}\\int \\dfrac{1}{\\sqrt{t}}dt"
"I=\\dfrac{1}{2}\\int t^{-1\/2}dt\n\\\\=\\dfrac{1}{2}.\\dfrac{t^{1\/2}}{1\/2}+c\n\\\\=\\sqrt t+c\n\\\\=\\sqrt{x^2+1}+c"
"I=\\dfrac{1}{2}\\int t^{-1\/2}dt\n\\\\=\\dfrac{1}{2}.\\dfrac{t^{1\/2}}{1\/2}+c\n\\\\=\\sqrt t+c\n\\\\=\\sqrt{x^2+1}+c""I=\\dfrac{1}{2}\\int t^{-1\/2}dt\n\\\\=\\dfrac{1}{2}.\\dfrac{t^{1\/2}}{1\/2}+c\n\\\\=\\sqrt t+c\n\\\\=\\sqrt{x^2+1}+c"
(b):
The graph using matlab from (-5,5) is as follows:
Comments
Leave a comment