Question #284170

Find an equation of the tangent plane to the surface at the given point. f(x, y) = x2 − 2xy + y2, (1, 5, 16) with maple lab please


1
Expert's answer
2022-01-06T16:54:01-0500

Solution:


The equation of the tangent plane to the surface at the point (xo,yo,zo)(x_o,y_o,z_o) on the surface, is:



zzo=fx(xo,yo)(xxo)+fy(xo,yo)(yyo)z-z_o=f_x(x_o,y_o)(x-x_o)+f_y(x_o,y_o)(y-y_o)



In the equation, the coefficients are the partial derivatives of the function.


By using the two-dimensional surface z=f(x,y)z=f(x,y), we can evaluate the partial derivatives of the function with respect to x and y at the given point.


Given surface is z=f(x,y)=x22xy+y2z=f(x,y)=x^2-2xy+y^2 at the given point (1, 5, 16).


First, we find the partial derivatives of the surface at the given point:


fx=x(x22xy+y2)\frac{∂f}{∂x}=\frac{∂}{∂x}(x^2-2xy+y^2)


x(x2)x(2x)+x(y2)\frac{∂}{∂x}(x^2)-\frac{∂}{∂x}(2x)+\frac{∂}{∂x}(y^2)


fx(x,y)=2x2yf_x(x,y)=2x-2y

fx(1,5)=2(1)2(5)=210f_x(1,5)=2(1)-2(5)=2-10

fx(1,5)=8f_x(1,5)=-8


fy=y(x22xy+y2)=y(x2)y(2xy)+y(y2)\frac{∂f}{∂y}=\frac{∂}{∂y}(x^2-2xy+y^2)=\frac{∂}{∂y}(x^2)-\frac{∂}{∂y}(2xy)+\frac{∂}{∂y}(y^2)


fy(x,y)=2y2xf_y(x,y)=2y-2x

fy(1,5)=2(5)2(1)=102f_y(1,5)=2(5)-2(1)=10-2

fy(1,5)=8f_y(1,5)=8


Let us find an equation of the tangent plane to the surface at the given point:



zzo=fx(xo,yo)(xxo)+fy(xo,yo)(yyo)z-z_o=f_x(x_o,y_o)(x-x_o)+f_y(x_o,y_o)(y-y_o)


z16=(8)(x1)+(8)(y5)z-16=(-8)(x-1)+(8)(y-5)


z16=8x+8y32z-16=-8x+8y-32


z=8x+8y32+16z=-8x+8y-32+16


z=8x+8y16z=-8x+8y-16


An equation of the tangent plane to the surface at the given point is 

z=8x+8y16z=-8x+8y-16


Maple code:


TangentPlane(x^22xy + y^2,x=1,y=5,z=16)


output:


8x8y+z=168x-8y+z=-16

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS