Question #283842

If x is positive show that. x>log(1+x)>x-(x^2/2)


1
Expert's answer
2022-01-02T17:36:38-0500

To prove

x>log(1+x)>xx22x>log(1+x)>x-\frac{x^{2}}{2} when x>0x>0

We first suppose that

f(x)=xlog(1+x)f(x)=x-log(1+x)

Then

f(x)=111+xf^\prime(x)=1-\frac{1}{1+x}

    \implies f(x)=x1+xf^\prime(x)=\frac{x}{1+x}

    \implies f(x)>0f^\prime(x)>0 as x>0x>0

    \implies f(x)>f(0)f(x)>f(0)

    \implies f(x)>0f(x)>0 as f(0)=0f(0)=0

    \implies xlog(1+x)>0x-log(1+x)>0

    \implies x>log(1+x)(1)x>log(1+x) ----(1)


Next, Suppose that


g(x)=log(1+x)(xx22)g(x)=log(1+x)-(x-\frac{x^{2}}{2})

when x>0x>0

    \implies g(x)=11+x(1x)g^\prime(x)=\frac{1}{1+x}-(1-x)

    \implies g(x)=11+x1+xg^\prime(x)=\frac{1}{1+x}-1+x

    \implies g(x)=11x1+x+xg^\prime(x)=\frac{1-1-x}{1+x}+x

    \implies g(x)=xx1+xg^\prime(x)=x-\frac{x}{1+x}

    \implies g(x)=x21+xg^\prime(x)=\frac{x^{2}}{1+x}

    \implies g(x)>0g^\prime(x)>0 as x>0x>0

So g(x)g(x) is increasing for x>0x>0


    \implies g(x)>g(0)g(x)>g(0)

    \implies g(x)>0g(x)>0 as g(0)=0g(0)=0

    \implies log(1+x)(xx22)>0log(1+x)-(x-\frac{x^{2}}{2})>0

when x>0x>0

    \implies log(1+x)>(xx22)(2)log(1+x)>(x-\frac{x^{2}}{2})---(2)


Combining (1) and (2), we have


x>log(1+x)>xx22x>log(1+x)>x-\frac{x^{2}}{2}

when x>0x>0

Hence proved.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS