To prove
x>log(1+x)>x−2x2 when x>0
We first suppose that
f(x)=x−log(1+x)
Then
f′(x)=1−1+x1
⟹ f′(x)=1+xx
⟹ f′(x)>0 as x>0
⟹ f(x)>f(0)
⟹ f(x)>0 as f(0)=0
⟹ x−log(1+x)>0
⟹ x>log(1+x)−−−−(1)
Next, Suppose that
g(x)=log(1+x)−(x−2x2)
when x>0
⟹ g′(x)=1+x1−(1−x)
⟹ g′(x)=1+x1−1+x
⟹ g′(x)=1+x1−1−x+x
⟹ g′(x)=x−1+xx
⟹ g′(x)=1+xx2
⟹ g′(x)>0 as x>0
So g(x) is increasing for x>0
⟹ g(x)>g(0)
⟹ g(x)>0 as g(0)=0
⟹ log(1+x)−(x−2x2)>0
when x>0
⟹ log(1+x)>(x−2x2)−−−(2)
Combining (1) and (2), we have
x>log(1+x)>x−2x2
when x>0
Hence proved.
Comments