Question #283627

let

f(x) =1 + 2π‘₯, π‘₯ ≀ 0

=3π‘₯ βˆ’ 2,0 < π‘₯ ≀ 1

= 2π‘₯ ΰ¬Ά βˆ’ 1, π‘₯ > 1

i) Check whether f is discontinuous. If yes, find where? ii) Give a rough sketch of the graph of f. 


1
Expert's answer
2021-12-30T15:59:19-0500
f(x)={1+2x,x≀03xβˆ’2,0<x≀12xβˆ’1,x>1f(x) = \begin{cases} 1+2x, x\leq 0 \\ 3x-2, 0<x\leq 1 \\ 2x-1, x> 1 \\ \end{cases}

i)


lim⁑xβ†’0βˆ’f(x)=lim⁑xβ†’0βˆ’(1+2x)=1+2(0)=1\lim\limits_{x\to 0^-}f(x)=\lim\limits_{x\to 0^-}(1+2x)=1+2(0)=1lim⁑xβ†’0+f(x)=lim⁑xβ†’0+(3xβˆ’2)=3(0)βˆ’2=βˆ’2\lim\limits_{x\to 0^+}f(x)=\lim\limits_{x\to 0^+}(3x-2)=3(0)-2=-2lim⁑xβ†’0βˆ’f(x)=1=ΜΈβˆ’2=lim⁑xβ†’0+f(x)\lim\limits_{x\to 0^-}f(x)=1\not=-2=\lim\limits_{x\to 0^+}f(x)lim⁑xβ†’0f(x)does not exist\lim\limits_{x\to 0}f(x) \text{does not exist}

The function f(x)f(x) has an jump discontinuity at x=0.x=0.



lim⁑xβ†’1βˆ’f(x)=lim⁑xβ†’1βˆ’(3xβˆ’2)=3(1)βˆ’2=1\lim\limits_{x\to 1^-}f(x)=\lim\limits_{x\to 1^-}(3x-2)=3(1)-2=1lim⁑xβ†’1+f(x)=lim⁑xβ†’1+(2xβˆ’1)=2(1)βˆ’1=1\lim\limits_{x\to 1^+}f(x)=\lim\limits_{x\to 1^+}(2x-1)=2(1)-1=1lim⁑xβ†’1βˆ’f(x)=1=lim⁑xβ†’1+f(x)=>lim⁑xβ†’1f(x)=1\lim\limits_{x\to 1^-}f(x)=1=\lim\limits_{x\to 1^+}f(x)=>\lim\limits_{x\to 1}f(x)=1f(1)=3(1)βˆ’2=1=lim⁑xβ†’1f(x)f(1)=3(1)-2=1=\lim\limits_{x\to 1}f(x)

The function f(x)f(x) is continuous at x=1.x=1.


The function f(x)f(x) is discontinuous at x=0.x=0.

The function f(x)f(x) has an jump discontinuity at x=0.x=0.

The function f(x)f(x) is continuous at x=1.x=1.


ii)





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS