Answer to Question #283627 in Calculus for Rekha

Question #283627

let

f(x) =1 + 2đ‘„, đ‘„ ≀ 0

=3đ‘„ − 2,0 < đ‘„ ≀ 1

= 2đ‘„ àŹ¶ − 1, đ‘„ > 1

i) Check whether f is discontinuous. If yes, find where? ii) Give a rough sketch of the graph of f. 


1
Expert's answer
2021-12-30T15:59:19-0500
"f(x) = \\begin{cases}\n 1+2x, x\\leq 0 \\\\\n 3x-2, 0<x\\leq 1 \\\\\n 2x-1, x> 1 \\\\\n\\end{cases}"

i)


"\\lim\\limits_{x\\to 0^-}f(x)=\\lim\\limits_{x\\to 0^-}(1+2x)=1+2(0)=1""\\lim\\limits_{x\\to 0^+}f(x)=\\lim\\limits_{x\\to 0^+}(3x-2)=3(0)-2=-2""\\lim\\limits_{x\\to 0^-}f(x)=1\\not=-2=\\lim\\limits_{x\\to 0^+}f(x)""\\lim\\limits_{x\\to 0}f(x) \\text{does not exist}"

The function "f(x)" has an jump discontinuity at "x=0."



"\\lim\\limits_{x\\to 1^-}f(x)=\\lim\\limits_{x\\to 1^-}(3x-2)=3(1)-2=1""\\lim\\limits_{x\\to 1^+}f(x)=\\lim\\limits_{x\\to 1^+}(2x-1)=2(1)-1=1""\\lim\\limits_{x\\to 1^-}f(x)=1=\\lim\\limits_{x\\to 1^+}f(x)=>\\lim\\limits_{x\\to 1}f(x)=1""f(1)=3(1)-2=1=\\lim\\limits_{x\\to 1}f(x)"

The function "f(x)" is continuous at "x=1."


The function "f(x)" is discontinuous at "x=0."

The function "f(x)" has an jump discontinuity at "x=0."

The function "f(x)" is continuous at "x=1."


ii)





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog