Evaluate the following line integrals along with the curve C.
(a) ∫
C (x2 − 2y2 ) ds; C is the line segment parametrized by r(t) = < t / √ 2 , t / √ 2 >, for 0 ≤ t ≤ 4.
"\\int_C(x^2 \u2212 2y^2 ) ds"
"r(t) = < \\dfrac{t}{\\sqrt{2}} , \\dfrac{t}{\\sqrt{2}} >, 0 \u2264 t \u2264 4."
"\\dfrac{dx}{dt}=\\dfrac{1}{\\sqrt{2}}, \\dfrac{dy}{dt}=\\dfrac{1}{\\sqrt{2}}"
"\\sqrt{(\\dfrac{dx}{dt})^2+(\\dfrac{dy}{dt})^2}=\\sqrt{(\\dfrac{1}{\\sqrt{2}})^2+(\\dfrac{1}{\\sqrt{2}})^2}=1"
"\\int_C(x^2 \u2212 2y^2 ) ds=\\displaystyle\\int_{0}^{4}(-\\dfrac{t^2}{2})(1)dt"
"=\\big[-\\dfrac{t^3}{6}\\big]\\begin{matrix}\n 4 \\\\\n 0\n\\end{matrix}=-\\dfrac{32}{3}"
Comments
Leave a comment