3y⁴+x⁷=5x
Differentiating with respect to x
12y³dxdy+7x6=5
=> 12y³dxdy = 5 - 7x⁶
=> dxdy = 12y35−7x6 ••••••••(1)
Now 12y³dxdy+7x6=5
Differentiating again with respect to x
12y3dx2d2y+36y2(dxdy)2 + 42x⁵ = 0
=> 2y3dx2d2y+6y2(dxdy)2 + 7x⁵ = 0
=>
2y3dx2d2y+6y2(12y35−7x6)2+7x5=0
=> 2y3dx2d2y=−6y2(12y35−7x6)2−7x5
=> dx2d2y=2y3−6y2(12y35−7x6)2−7x5
=> dx2d2y=−2y36y2(12y35−7x6)2+7x5
=> dx2d2y=−2y36y2(144y6(5−7x6)2)+7x5
=> dx2d2y=−2y3(24y4(5−7x6)2)+7x5
=> dx2d2y=−48y7(5−7x6)2+168x5y4
Comments