Question #283950

Determine the volume of the solid/ring obtained by the region bounded by

𝑦=2√𝑥−1and 𝑦=𝑥−1 about line x= -1 using shell method


1
Expert's answer
2022-02-03T13:44:51-0500

We have that;

V=abA(y) dy, where A(y)=π((outer radius)2(inner radius)2)\displaystyle V=\int^b_aA(y)\ dy, \text{ where }A(y)=\pi((\text{outer radius})^2-(\text{inner radius})^2)


Now,

y=2x1x=y24+1 and y=x1x=y+1\displaystyle y=2\sqrt{x-1}\Rightarrow x=\frac{y^2}{4}+1\ \text{and }y=x-1\Rightarrow x=y+1\\

So,

y24+1=y+1y24y=0y24y=0y(y4)=0y=0,4\displaystyle \frac{y^2}{4}+1=y+1\Rightarrow\frac{y^2}{4}-y=0\Rightarrow y^2-4y=0\Rightarrow y(y-4)=0\Rightarrow y=0,4

Hence, the first ring will occur at y=0\displaystyle y=0 and the final ring will occur at y=4\displaystyle y=4 and so these will be our limits of integration.


Next,

outer radius =y+1+1=y+2\displaystyle =y+1+1=y+2, and inner radius =y24+1+1=y24+2\displaystyle =\frac{y^2}{4}+1+1=\frac{y^2}{4}+2

Also, the cross-sectional area is;

A(y)=π((y+2)2(y24+2)2)=π(4yy416)\displaystyle A(y)=\pi((y+2)^2-(\frac{y^2}{4}+2)^2)=\pi\left(4y-\frac{y^4}{16}\right)


Thus, the volume is;

V=abA(y) dy=π04(4yy416) dy=π[2y2y580]04=96π5\displaystyle V=\int^b_aA(y)\ dy=\pi\int^4_0\left(4y-\frac{y^4}{16}\right)\ dy=\pi\left[2y^2-\frac{y^5}{80}\right]^4_0=\frac{96\pi}{5}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS