Answer to Question #284166 in Calculus for mohan

Question #284166

The functions f and g are defined by f(x) =1/(1-3x) and g(x) =log1/3(3x-2)-log3(x) respectively



1. Write down the sets Df (ehe domain of f) and Dg (the domain of g)



2. Solve the inequality f(x) > 2 for x\is in∈ Df


3. Solve the inequality f(x) ≥ 2 for x\is in∈ Dg


Hint: Use the change of base formula

1
Expert's answer
2022-01-04T11:27:06-0500

1.


"f(x)=\\dfrac{1}{1-3x}"

"1-3x\\not=0=>x\\not=\\dfrac{1}{3}"

"Df: (-\\infin, \\dfrac{1}{3})\\cup(\\dfrac{1}{3}, \\infin)"

"g(x)=\\log_{1\/3}(3x-2)-\\log_{3}(x)"

"\\begin{cases}\n 3x-2>0 \\\\\n x>0 \n\\end{cases}=>x>\\dfrac{2}{3}"

"Dg: (\\dfrac{2}{3}, \\infin)"

2.


"f(x)>2, x\\in Df"

"\\dfrac{1}{1-3x}>2, x\\in(-\\infin, \\dfrac{1}{3})\\cup(\\dfrac{1}{3}, \\infin)"

"\\dfrac{1}{1-3x}-2>0"

"\\dfrac{1-2+6x}{1-3x}>0"

"\\dfrac{6x-1}{3x-1}<0"

"\\dfrac{1}{6}<x<\\dfrac{1}{3}"

"x\\in(\\dfrac{1}{6},\\dfrac{1}{3})"

3.


"g(x)\\geq2, x\\in Dg"

"\\log_{1\/3}(3x-2)-\\log_{3}(x)\\geq2, x\\in(\\dfrac{2}{3}, \\infin)"

"\\log_{1\/3}(3x-2)=-\\log_{3}(3x-2)"

"2=\\log_{3}(9)"

"-\\log_{3}(3x-2)-\\log_{3}(x)\\geq\\log_{3}(9)"

"\\log_{3}(9x(3x-2))\\leq0"

"3>1=>y(x)=\\log_{3}(x)\\ increases"

Then


"9x(3x-2)\\leq1, x\\in(\\dfrac{2}{3}, \\infin)"

"27x^2-18x-1\\leq0"

Let


"27x^2-18x-1=0"

"D=(-18)^2-4(27)(-1)=432"

"x=\\dfrac{18\\pm\\sqrt{432}}{2(27)}=\\dfrac{3\\pm2\\sqrt{3}}{9}=\\dfrac{1}{3}\\pm\\dfrac{2\\sqrt{3}}{9}"

"\\begin{cases}\n \\dfrac{1}{3}-\\dfrac{2\\sqrt{3}}{9}\\leq x\\leq \\dfrac{1}{3}+\\dfrac{2\\sqrt{3}}{9} \\\\\n x>\\dfrac{2}{3} \n\\end{cases}"

"=>\\dfrac{2}{3}<x\\leq\\dfrac{1}{3}+\\dfrac{2\\sqrt{3}}{9}"

"x\\in\\bigg(\\dfrac{2}{3},\\ \\dfrac{1}{3}+\\dfrac{2\\sqrt{3}}{9}\\bigg]"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog