Question #284166

The functions f and g are defined by f(x) =1/(1-3x) and g(x) =log1/3(3x-2)-log3(x) respectively



1. Write down the sets Df (ehe domain of f) and Dg (the domain of g)



2. Solve the inequality f(x) > 2 for x\is in∈ Df


3. Solve the inequality f(x) ≥ 2 for x\is in∈ Dg


Hint: Use the change of base formula

1
Expert's answer
2022-01-04T11:27:06-0500

1.


f(x)=113xf(x)=\dfrac{1}{1-3x}

13x0=>x131-3x\not=0=>x\not=\dfrac{1}{3}

Df:(,13)(13,)Df: (-\infin, \dfrac{1}{3})\cup(\dfrac{1}{3}, \infin)

g(x)=log1/3(3x2)log3(x)g(x)=\log_{1/3}(3x-2)-\log_{3}(x)

{3x2>0x>0=>x>23\begin{cases} 3x-2>0 \\ x>0 \end{cases}=>x>\dfrac{2}{3}

Dg:(23,)Dg: (\dfrac{2}{3}, \infin)

2.


f(x)>2,xDff(x)>2, x\in Df

113x>2,x(,13)(13,)\dfrac{1}{1-3x}>2, x\in(-\infin, \dfrac{1}{3})\cup(\dfrac{1}{3}, \infin)

113x2>0\dfrac{1}{1-3x}-2>0

12+6x13x>0\dfrac{1-2+6x}{1-3x}>0

6x13x1<0\dfrac{6x-1}{3x-1}<0

16<x<13\dfrac{1}{6}<x<\dfrac{1}{3}

x(16,13)x\in(\dfrac{1}{6},\dfrac{1}{3})

3.


g(x)2,xDgg(x)\geq2, x\in Dg

log1/3(3x2)log3(x)2,x(23,)\log_{1/3}(3x-2)-\log_{3}(x)\geq2, x\in(\dfrac{2}{3}, \infin)

log1/3(3x2)=log3(3x2)\log_{1/3}(3x-2)=-\log_{3}(3x-2)

2=log3(9)2=\log_{3}(9)

log3(3x2)log3(x)log3(9)-\log_{3}(3x-2)-\log_{3}(x)\geq\log_{3}(9)

log3(9x(3x2))0\log_{3}(9x(3x-2))\leq0

3>1=>y(x)=log3(x) increases3>1=>y(x)=\log_{3}(x)\ increases

Then


9x(3x2)1,x(23,)9x(3x-2)\leq1, x\in(\dfrac{2}{3}, \infin)

27x218x1027x^2-18x-1\leq0

Let


27x218x1=027x^2-18x-1=0

D=(18)24(27)(1)=432D=(-18)^2-4(27)(-1)=432

x=18±4322(27)=3±239=13±239x=\dfrac{18\pm\sqrt{432}}{2(27)}=\dfrac{3\pm2\sqrt{3}}{9}=\dfrac{1}{3}\pm\dfrac{2\sqrt{3}}{9}

{13239x13+239x>23\begin{cases} \dfrac{1}{3}-\dfrac{2\sqrt{3}}{9}\leq x\leq \dfrac{1}{3}+\dfrac{2\sqrt{3}}{9} \\ x>\dfrac{2}{3} \end{cases}

=>23<x13+239=>\dfrac{2}{3}<x\leq\dfrac{1}{3}+\dfrac{2\sqrt{3}}{9}

x(23, 13+239]x\in\bigg(\dfrac{2}{3},\ \dfrac{1}{3}+\dfrac{2\sqrt{3}}{9}\bigg]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS