The functions f and g are defined by f(x) =1/(1-3x) and g(x) =log1/3(3x-2)-log3(x) respectively
1. Write down the sets Df (ehe domain of f) and Dg (the domain of g)
2. Solve the inequality f(x) > 2 for x\is in∈ Df
3. Solve the inequality f(x) ≥ 2 for x\is in∈ Dg
Hint: Use the change of base formula
1.
"1-3x\\not=0=>x\\not=\\dfrac{1}{3}"
"Df: (-\\infin, \\dfrac{1}{3})\\cup(\\dfrac{1}{3}, \\infin)"
"g(x)=\\log_{1\/3}(3x-2)-\\log_{3}(x)"
"\\begin{cases}\n 3x-2>0 \\\\\n x>0 \n\\end{cases}=>x>\\dfrac{2}{3}"
"Dg: (\\dfrac{2}{3}, \\infin)"
2.
"\\dfrac{1}{1-3x}>2, x\\in(-\\infin, \\dfrac{1}{3})\\cup(\\dfrac{1}{3}, \\infin)"
"\\dfrac{1}{1-3x}-2>0"
"\\dfrac{1-2+6x}{1-3x}>0"
"\\dfrac{6x-1}{3x-1}<0"
"\\dfrac{1}{6}<x<\\dfrac{1}{3}"
"x\\in(\\dfrac{1}{6},\\dfrac{1}{3})"
3.
"\\log_{1\/3}(3x-2)-\\log_{3}(x)\\geq2, x\\in(\\dfrac{2}{3}, \\infin)"
"\\log_{1\/3}(3x-2)=-\\log_{3}(3x-2)"
"2=\\log_{3}(9)"
"-\\log_{3}(3x-2)-\\log_{3}(x)\\geq\\log_{3}(9)"
"\\log_{3}(9x(3x-2))\\leq0"
"3>1=>y(x)=\\log_{3}(x)\\ increases"
Then
"27x^2-18x-1\\leq0"
Let
"D=(-18)^2-4(27)(-1)=432"
"x=\\dfrac{18\\pm\\sqrt{432}}{2(27)}=\\dfrac{3\\pm2\\sqrt{3}}{9}=\\dfrac{1}{3}\\pm\\dfrac{2\\sqrt{3}}{9}"
"\\begin{cases}\n \\dfrac{1}{3}-\\dfrac{2\\sqrt{3}}{9}\\leq x\\leq \\dfrac{1}{3}+\\dfrac{2\\sqrt{3}}{9} \\\\\n x>\\dfrac{2}{3} \n\\end{cases}"
"=>\\dfrac{2}{3}<x\\leq\\dfrac{1}{3}+\\dfrac{2\\sqrt{3}}{9}"
"x\\in\\bigg(\\dfrac{2}{3},\\ \\dfrac{1}{3}+\\dfrac{2\\sqrt{3}}{9}\\bigg]"
Comments
Leave a comment