L = ∫ 1 + ( y ′ ) 2 d x y = 2 x y ′ = 1 2 x L = ∫ 0 1 2 1 + 1 2 x d x L= \int \sqrt{1+(y')^2}dx\\
y=\sqrt{2x}\\
y'=\frac{1}{\sqrt{2x}}\\
L= \int_0^\frac{1}{2}\sqrt{1+\frac{1}{2x}}dx\\ L = ∫ 1 + ( y ′ ) 2 d x y = 2 x y ′ = 2 x 1 L = ∫ 0 2 1 1 + 2 x 1 d x
This can also be written as L = ∫ 0 1 2 1 2 x + 1 d x L= \int_0^\frac{1}{2}\sqrt{\frac{1}{2x}+1}dx\\ L = ∫ 0 2 1 2 x 1 + 1 d x
we apply linearity
1 2 ∫ 1 x + 2 d x \frac{1}{\sqrt{2}}\int \sqrt{\frac{1}{x}+2}dx\\ 2 1 ∫ x 1 + 2 d x
let u = 1 x + 2 \sqrt{\frac{1}{x}+2}\\ x 1 + 2 , dx = -21 x + 2 x 2 d u , d x = − 2 ∫ u 2 ( u 2 − 2 ) d u \sqrt{\frac{1}{x}+2x^2}du, dx=-2\int \frac{u^2}{(u^2-2)}du\\ x 1 + 2 x 2 d u , d x = − 2 ∫ ( u 2 − 2 ) u 2 d u
we integrate ∫ u 2 ( u 2 − 2 ) d u = ∫ ( u 2 − 2 ( u 2 − 2 ) 2 + 2 ( u 2 − 2 ) 2 ) d u = \int \frac{u^2}{(u^2-2)}du = \int (\frac{u^2-2}{(u^2-2)^2}+\frac{2}{(u^2-2)^2})du=\\ ∫ ( u 2 − 2 ) u 2 d u = ∫ ( ( u 2 − 2 ) 2 u 2 − 2 + ( u 2 − 2 ) 2 2 ) d u =
∫ ( 1 ( u 2 − 2 ) + 2 ( u 2 − 2 ) 2 ) d u \int (\frac{1}{(u^2-2)}+\frac{2}{(u^2-2)^2})du\\ ∫ ( ( u 2 − 2 ) 1 + ( u 2 − 2 ) 2 2 ) d u
we split and integrate differently.
∫ ( 1 ( u 2 − 2 ) d u ⟹ L n ( u − 2 ) 2 3 2 − L n ( u + 2 ) 2 3 2 \int (\frac{1}{(u^2-2)}du \implies \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}}- \frac{Ln(u+\sqrt{2})}{2^{\frac{3}{2}}} ∫ ( ( u 2 − 2 ) 1 d u ⟹ 2 2 3 L n ( u − 2 ) − 2 2 3 L n ( u + 2 )
also
∫ 2 ( u 2 − 2 ) 2 d u ⟹ ∫ ( 1 ( u 2 − 2 ) d u ⟹ L n ( u − 2 ) 2 3 2 − L n ( u − 2 ) 2 3 2 − 1 4 ( u + 2 ) − 1 4 ( u − 2 ) \int\frac{2}{(u^2-2)^2}du \implies \int (\frac{1}{(u^2-2)}du \implies \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}}- \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}} - \frac{1}{4(u+\sqrt{2})}- \frac{1}{4(u-\sqrt{2})}\\ ∫ ( u 2 − 2 ) 2 2 d u ⟹ ∫ ( ( u 2 − 2 ) 1 d u ⟹ 2 2 3 L n ( u − 2 ) − 2 2 3 L n ( u − 2 ) − 4 ( u + 2 ) 1 − 4 ( u − 2 ) 1
but substituting the solution of the integrations back, we get
L n ( u − 2 ) 2 3 2 − L n ( u + 2 ) 2 3 2 + L n ( u − 2 ) 2 3 2 − L n ( u − 2 ) 2 3 2 − 1 4 ( u + 2 ) − 1 4 ( u − 2 ) \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}}- \frac{Ln(u+\sqrt{2})}{2^{\frac{3}{2}}}+ \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}}- \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}} - \frac{1}{4(u+\sqrt{2})}- \frac{1}{4(u-\sqrt{2})} 2 2 3 L n ( u − 2 ) − 2 2 3 L n ( u + 2 ) + 2 2 3 L n ( u − 2 ) − 2 2 3 L n ( u − 2 ) − 4 ( u + 2 ) 1 − 4 ( u − 2 ) 1
recall, u= 1 x + 2 \sqrt{\frac{1}{x}+2}\\ x 1 + 2 then we substitute u in terms of x back and introduce the lower and upper limits
L n ( u − 2 ) 2 3 2 − L n ( u + 2 ) 2 3 2 + L n ( u − 2 ) 2 3 2 − L n ( u − 2 ) 2 3 2 − 1 4 ( u + 2 ) − 1 4 ( u − 2 ) ∣ 0 1 2 \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}}- \frac{Ln(u+\sqrt{2})}{2^{\frac{3}{2}}}+ \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}}- \frac{Ln(u-\sqrt{2})}{2^{\frac{3}{2}}} - \frac{1}{4(u+\sqrt{2})}- \frac{1}{4(u-\sqrt{2})}|_0^\frac{1}{2} 2 2 3 L n ( u − 2 ) − 2 2 3 L n ( u + 2 ) + 2 2 3 L n ( u − 2 ) − 2 2 3 L n ( u − 2 ) − 4 ( u + 2 ) 1 − 4 ( u − 2 ) 1 ∣ 0 2 1
We have.
1 2 + L n ( 2 + 1 ) − L n ( 2 − 1 ) 4 \frac{1}{\sqrt{2}}+\frac{Ln(\sqrt{2}+1)-Ln(\sqrt{2}-1)}{4} 2 1 + 4 L n ( 2 + 1 ) − L n ( 2 − 1 )
Comments